

PowerTerm®
Power Script Language

Programmer’s Reference
Version 6.5.1

Ericom North America
Ericom Software Inc.
231 Herbert Ave., Bldg. #4
Closter, NJ 07624 USA
Tel: +1 201 767 2210
Fax: +1 201 767 2205
Toll Free: 1 888 769 7876
Email: info@ericom.com

Ericom Europe
Ericom Software (UK) Ltd.
11a Victoria Square
Droitwich, Worcestershire
WR9 8DE United Kingdom
Tel: +44 (0)1905 777 970
Fax: + 44 (0)1905 777 972
Email: ukinfo@ericom.com

Ericom France
Ericom Software France
19, Boulevard Malesherbes
75008 Paris
France
Tel: +33 (0)1 5527 3938
Fax: +33 (0)2 4773 8765
Email: frinfo@ericom.com

Ericom International
Ericom Software Ltd.
8 Hamarpeh Street
Har Hotzvim
Jerusalem 91450 Israel
Tel: +972 (0)2 571 4774
Fax: +972 (0)2 571 4737
Email: info@ericom.com

2

Important Notice

This reference is subject to the following conditions and restrictions:

• This Programmer’s Reference provides documentation for the PowerTerm Series of products.

Your specific PowerTerm product might include only a portion of the features documented in
this reference.

•

•

•

•

•

The proprietary information belonging to Ericom® Software Ltd. is supplied solely for the
purpose of assisting explicitly and properly authorized users of PowerTerm®.
No part of its contents may be used for any other purpose, disclosed to any person or firm, or
reproduced by any means, electronic and mechanical, without the express prior written
permission of Ericom® Software Ltd.
The text and graphics are for the purpose of illustration and reference only. The specifications
on which they are based are subject to change without notice.
The software describe in this document is furnished under a license agreement. The software
may be used or copied only in accordance with the terms of that agreement.
Information in this document is subject to change without notice. Corporate and individual
names and data used in examples herein are fictitious unless otherwise noted.

Copyright© 2003 Ericom® Software Ltd.

Ericom® and PowerTerm® are registered trademarks of Ericom® Software Ltd., which may be
registered in certain jurisdictions
Other company and brand, product and service names are trademarks or registered trademarks of
their respective holders.

3

Table of Contents

IMPORTANT NOTICE 2

TABLE OF CONTENTS 3

INTRODUCTION TO PSL 9

PSL OVERVIEW 10
PSL Types 10
PSL Syntax 10

Braces 11
Brackets 11
Dollar Sign 11
Backslash 12

PSL Data Types 12
Lists 12
Expressions 12
Commands 12

Variable Assignment 13
Syntax 13
Variables 13

USING POWERTERM SCRIPTS 15
¾To create a script file 15
¾To edit a script file 15
¾To record a script 15
¾To activate a recorded script 16
¾To save a recorded script 16

Running Scripts 16
¾To run individual script commands 16
¾To run a script file 16
¾To run a script file upon connecting to a host 16
¾To start PowerTerm using a script (Windows edition) 16

Programming Soft Buttons 17
¾To program Soft buttons 17
¾To run a script file during a PowerTerm session using Soft buttons 17

Programming the Power Pad 17
¾To program the Power Pad 17

PSL REFERENCE 19

4

PowerTerm Sample Scripts 19
Activating Script Files from the Host 19

Escape Sequences for VT 19
Escape Sequences for DG 20

DDE Commands (Windows edition) 20

A 22
activate-menu-item 22
append 22
array 23
ascii-code 24

B 26
break 26

C 27
case 27
catch 28
cd 29
clear screen 30
close 30
color 31
concat 32
continue 32
copy file 33
copy from clipboard 34
copy to clipboard 34
cursor 35

D 36
date 36
dde execute 36
dde initiate 37
dde poke 37
dde server topic 37
display 38

E 39
eof 39
error 39
eval 40
exec 41
exit emulator 41
exit script 42
expr 42

F 47
file 47

5

flush 48
for 49
foreach 50
format 50
func 53

G 55
get 55
getenv 56
get printer name 56
gets 57
glob 57
global 58

H 60
history 60

I 62
if 62
incr 63
indfile 63
info 66
input line 68
input password 68
iscommand 69

J 70
join 70

K 71
key 71

L 73
lappend 73
lindex 73
linsert 74
list 75
llength 75
lock columns 76
lrange 76
lreplace 77
lsearch 77
lsort 78

M 80
md 80
menu 80
message 81

6

move file 82

O 84
open 84
open keyboard file 85
open power pad file 86
open setup file 86

P 87
pad 87
paste 87
paste from clipboard 88
print file 88
print screen 89
proc 89
puts 90
pwd 91

R 92
read 92
recv ascii file 93
recv binary file 93
recv binary stop 94
recv file 94
recv indfile 95
regexp 95
regsub 98
remove menu item 99
rename 99
rename-file 100
return 100
ring bell 102
run 102

S 103
save keyboard file 103
save power pad file 103
save setup file 103
scan 104
screen 106
screen-rect 106
seek 107
send 108
send abort output 109
send ascii file 109
send binary file 110
send break 110
send file 110
send indfile 111

7

send raw data 112
session 112
set 114
set auto signon 116
set baud rate 117
set comm-type 117
set device-name 118
set disable-exit-active-session 119
set end of medium 119
set func cols 119
set func rows 120
set keyboard 120
set lu category 121
set lu name 121
set max sessions 122
set menu hotspot rows 122
set message library 122
set message queue 123
set mouse control 123
set mouse report 124
set node name 124
set pad cols 125
set pad pos 125
set pad rows 125
set pad size 126
set parity 126
set print directions 126
set print file name 127
set print prefix 127
set print screen convert 128
set print suffix 128
set printer header lines 128
set printer transparent header 129
set printer transparent trailer 129
set protocol type 129
set repeat right alt key 130
set repeat left alt key 130
set repeat left ctrl key 130
set repeat right ctrl key 131
set security type 131
set slave printer convert 131
set ssh allow agent 132
set ssh attempt tis 132
set ssh cipher 132
set ssh enable compression 133
set ssh enable x11 133
set ssh type 134
set ssh username 134
set ssl type 134
set system name 135
set telnet port 135

8

set terminal id 136
set use alt key up 137
set use available ssh show info 137
set use tn3270e protocol 137
split 138
start auto print 138
status message 139
stop auto print 139
string 139
switch 141
system request 143

T 145
tell 145
terminal id 145
time 146
toggle-auto-print 146
trace 147

U 150
unlock columns 150
unprotected-field 150
unset 151
uplevel 151
upvar 152
use default printer 153

W 154
wait 154
wait string 155
while 156
window 157

9

Introduction to PSL

The Power Script Language (PSL) is PowerTerm’s own programming language. It enables you
to create scripts for automating tasks. For example, you can create a script to login to PowerTerm,
execute a file, display a message, etc. Scripts can be run upon startup or during a PowerTerm
session. They can be written in any standard text editor, like Notepad, and are saved with a .psl
extension. PSL is intended for users with programming or scripting skils.

Each PSL command is also described in PowerTerm’s online help, which can be accessed by
selecting Contents from the Help menu.

The PSL Reference is comprised of the following topics:

•
•

•

PSL Overview, describes the programming conventions used in PSL, page 10.
Using PowerTerm Scripts, describes how to create, edit, run, save and activate scripts in
PowerTerm, page 15.
PSL Reference, describes standard scripts and commands as well as an alphabetical
reference of all PSL commands with examples, page 19.

10

PSL Overview

The following topics are described:

•
•
•
•

PSL Types, describes the different categories of PSL commands, below.
PSL Syntax, describes the syntax used to create PowerTerm scripts, below.
PSL Data Types, describes common formats for data strings, page 12.
Variable Assignment, describes the syntax used to assign variables, page 13.

PSL Types

The PSL commands can be grouped into different categories:

Simulation transmission to
host commands

Enables you to communicate with the host. For examples, the
<send> command sends data to the host.

Standard programming
commands

Enables you to use standard programming commands. For
example, the <exec> command opens a program.

File handling commands Enables you to work with files. For example, the <read>
command reads from a file.

PowerTerm-specific
commands

Enables you to activate specific PowerTerm features. For
example, the <map> command enables you to map a PC key to
a host key.

Desktop interface commands Enables you to manipulate components in the PowerTerm
window. For example, the <menu hide> command hides the
PowerTerm menu.

DDE commands Enables you to use standard Microsoft Windows DDE
mechanisms to communicate with other Windows applications.

PSL Syntax

A command consists of one or more fields separated by spaces or tabs. The first field is the name
of a command, which may be either a built-in command or a procedure consisting of a sequence
of PSL commands. Newline characters are used as command separators, and semicolons may be
used to separate commands on the same line. Each PSL command returns either a string result, or
an empty string. PSL commands must be entered in lower case.

11

PSL has four additional syntactic constructions:

•
•
•
•

•
•

Braces {}
Brackets []
Dollar sign $
Backslash \

Braces

Braces are used to group complex arguments. They act as nestable quote characters. If the first
character of an argument is an open brace, then the argument is not terminated by white space.
Instead, it is terminated by the matching close brace. The argument passed to the command
consists of everything between the braces, with the enclosing braces stripped off. For example:
host={vms unix{aix hp sun} aos}

The variable host will receive one argument:
“vms unix {aix hp sun} aos”
This particular command will set the variable host to the specified string.

If an argument is enclosed in braces, then none of the other substitutions described below is made
on the argument. One of the most common uses of braces is to specify a PSL sub-program as an
argument to a PSL command.

Brackets

Brackets are used to invoke command substitution. If an open bracket appears in an argument,
then everything from the open bracket up to the matching close bracket is treated as a command
and executed recursively by PSL. The result of the command is hten substituted into the argument
in place of the bracketed string. For example:
msg=[format {Data is %s bytes long} 99]

The format command does print-like formatting (from the C language) and returns the string
“Data is 99 bytes long”, which is then assigned to the variable message.

Dollar Sign

The dollar sign is used for variable substitution. If the dollar sign appears in an argument, then the
following characters are treated as a variable name, and the contents of the variable are
substituted into the argument in place of the dollar sign and name. For example:
num=99

msg=[format {Data is %s bytes long} $num]

The result is the same as the single command in the previous example.

The following are examples of common functions for the dollar sign in PSL:

$P1 represents the variable of the parameter if P1 is the parameter.
$PC counts the number of parameters in the command line.

12

Backslash

The backslash character may be used to insert special characters into arguments, such as braces or
nonprinting characters. Such special characters include the following:
[] { } $ t b r m

\xFF will send the hex code FF (where F can be any hex character: 0-9, A-F). For example:
send \x1B\[m

This command will send the three characters: escape, [, and m.

PSL Data Types

PSL uses only one type of data: strings. All commands, arguments to commands, results returned
by commands and variable values are ASCII strings.
Although everything in PSL is a string, many commands expect their string arguments to have
particular formats. There are three particularly common formats for strings:

•
•
•

Lists
Expressions
Commands

Lists

A list is just a string containing one or more fields separated by white space, similar to a
command. Braces may be used to enclose complex list elements. These complex list elements are
often lists in their own right. For example:
{vms unix {aix hp sun} aos}

This is a list with four elements, the third of which is a list with three elements.

PSL provides commands for a number of list-manipulation operations, such as creating lists,
extracting elements and computing list lengths.

Expressions

The second common form for a string is a numeric expression. PSL expressions have the same
operators and rules of precedence as expressions in the C language. The expr PSL command
evaluates a string as an expression and returns the result (as a string, of course). For example:
Expr {($x<$y)||($z!=0)}

Returns “1” if the numeric value of variable x is less than that of variable y, or if variable z is not
zero. Otherwise it returns “0”. Several other commands, such as if and for, expect one or more of
their arguments to be expressions.

Commands

The third common interpretation of strings is as commands (or sequences of commands).
Arguments of this form are used in PSL commands that implement control structures. For
example:

13

if{$x<$y}{

swap=$x

x=$y

y=$swap

}

The if command receives two arguments here, each of which is delimited by braces. if is a built-
in command that evaluates its first argument as an expression. It executes its second argument as
a PSL command, if the result is non-zero. This particular command swaps the values of the
variables x and y if x is less than y.

PSL also allows users to define command procedures written in the PSL language. The proc
built-in command is used to create a PSL procedure (PSLproc). For example:
proc factorial x{

if{$x==1}{return 1}

return[expr{$x*[factorial[expr$x-1]]}]

}

This PSL command defines a recursive factorial procedure. The proc command takes three
arguments: a name of the new PSLproc, a list of variable names (in this case the list has only a
single element, x), and a PSL command that comprises the body of the PSLproc. After this proc
command has been executed, factorial may be invoked just like any other PSL command for
example:
Factorial 4

Returns the string “24”.

In addition to the commands already mentioned, PSL provides commands for manipulating
strings (comparison, matching and printf/scanf-like C language operations), commands for
manipulating files and file names. The built-in PSL commands provide a simple but complete
programming language.

Variable Assignment

Syntax

VarName = value

varName[index] = value

Variable assignment is as follows: the variable varName is on the left side of the expression and
the value you want to assign to the variable is on the right. For example:
B = 200

Variables

There are two types of variables:
•
•

Scalar
Array

14

A variable containing a single value is a scalar variable and the majority of the time fits ones
needs. Other times, it’s convenient to assign more than one related value to a single variable.
Then you can create an array variable that can contain a series of values. Scalar and array
variables are declared in the same way, except that the declaration of an array variable uses
brackets [] following the variable name.

A variable’s scope is determined by where it is declared. When you declare a variable within a
procedure, only code within that procedure can access or modify the value of that variable. It has
local scope and is called a local variable. In contrast a global variable declared outside a
procedure is recognizable to all the procedures in your script.

N

OTE An exception to the rule governing local variables is when the global
command has been invoked to declare varName to be global.

15

Using PowerTerm Scripts

PowerTerm provides you with the following script options:

•

•
•

•

•
•

¾

1
2
3

4
5
6
7
8

¾

1
2

3
4
5

¾

1

2

Create a Script creates a script to run upon startup or at any time during a PowerTerm
session.
Edit a Script edits an existing script file.
Record a Script creates a script by recording all the actions that you perform in the
PowerTerm window. Actions can include selecting a menu option, typing an entry on the
screen, making selections in a dialog box and so on.
Run Scripts runs specific scripts or individual commands, upon startup or during a
PowerTerm session, to automate specific tasks. You can only run saved scripts.
Activate a recorded Script executes a non-saved script from the current memory.
Save a recorded Script saves your scripts to be used at a later date.

To create a script file:

Select Script | Edit Script. The Edit Script dialog box appears.
Specify the PowerTerm folder in the Look in field in which to store the new script.
Type a name for the new script file in the File name field. You can type any name and
extension that comply with DOS file-naming conventions. It is recommended that you
use a .psl extension, because PowerTerm automatically recognizes it indicating a script
file.
Click Open. A message box displays, asking whether to create a new file.
Click Yes. Notepad opens.
Type the script command(s) that you require.
Select File | Save.
Exit from Notepad.

To edit a script file:

Select Script | Edit Script. The Edit Script dialog box appears.
Double-click the required script file in the files list. Notepad opens and displays the
selected script.
Edit the script as required.
Select File | Save.
Exit from Notepad.

To record a script:

Select Script | Start Script Recording. The menu option changes to Stop Script
Recording.
Perform the manual operations that you want to record. For example, select a menu
option, enter parameters in a dialog box, or type a password.

16

3

4
5

¾

•

¾

1
2
3
4

¾

1
2
3

¾

1

2

¾

1
2

¾

1
2

3

Select Script | Pause Script Recording if you do not want to record certain operations.
The script recording process pauses and the menu option changes to Continue Script
Recording.
Select Script | Continue Script Recording to resume script recording.
Select Script | Stop Script Recording when you have performed all the operations to be
stored in the script.

To activate a recorded script:

Select Script | Activate Recorded Script. The script currently recorded in memory is
activated.

To save a recorded script:

Select Script | Save Recorded Script. The Record Script dialog box appears.
Select the directory in which you want to save the file.
Enter a file name. The .psl file extension is automatically added.
Click Save. The file is saved with the specific file name.

Running Scripts

PowerTerm enables you to run scripts from startup by creating a shortcut to PowerTerm and a
specific script file. This option can be used to connect to each host using different scripts. You
can also run scripts by programming Soft buttons and the Power Pad (Windows edition).

To run individual script commands:

Select Script | Script Command. The Script Command dialog box appears.
Type the name of the script command you want to run.
Click OK. The specified script command is executed.

To run a script file:

Select Script | Run Script. The Run Script dialog box appears with a list of all the files
in the PowerTerm directory that carry the .psl extension.
Double-click the script file that you want to run. The selected script file is executed.

To run a script file upon connecting to a host:

Select Communication | Connect. The Connect dialog box appears.
Type the desired script file in the Script File field or browse for it.

To start PowerTerm using a script (Windows edition):

The following procedure describes one way to create a shortcut. Consult your Windows
documentation for a description of other available options.

Locate the file ptw23.exe on your computer.
Right-click and select Create Shortcut option. The Shortcut to ptw32.exe appears in
the current folder.
Right-click the created shortcut and select Properties option. The Shortcut to ptw32.exe
Properties dialog box appears.

17

4
5

1.

2.

6

¾

1

2
3

4

¾

•

¾

1
2

In the Target field, position your cursor after the .exe file name.
Add a space and then type the name of the required script file.
You can also add parameters to the script file. These determine the communication
parameters. For example, it can be the name of the host to which you want to connect, or
the port number.

Position your cursor after the PSL script name in the Target field
Add a space and type the required parameters. Parameters should be separated by a
space. For example:
\PTW32\PTW32.EXE COMM.PSL 1 9600 xonxoff

PowerTerm recognizes Windows file naming conventions, including spaces in a file
name. If you have a setup file with a space in the name, PowerTerm ignores the space
and looks directly for the .psl extension.

Click OK. When you start PowerTerm, the script file is automatically executed and you
are connected to the host that you specified in your setup file.

Programming Soft Buttons

Along the bottom of the PowerTerm window are twelve programmable Soft buttons, by default
named from F1 to F12. These can be renamed and programmed to execute customized scripts.
You send the programmed command to the host by clicking the desired Soft button.

The Soft button parameters are saved automatically in the terminal setup file.

To program Soft buttons:

Right-click the Soft button that you want to program. The Function Button dialog box
appears.
Type the Function Description (that is, the name that will appear on the button).
Type the Script Commands to be run by this button. For example, “exec notepad”. You
can type several scripts separated by semicolons.
Click OK. The Soft button is now displayed with its new name and will execute the
defined script.

To run a script file during a PowerTerm session using Soft buttons:

Click the Soft button that has the desired script assigned. The script is sent to the host.

Programming the Power Pad

The Power Pad is a floating keypad for which its buttons can be programmed to execute
customized PSL scripts. The buttons are by default named F1, F2, F3, and so on, with a few
default function names, such as Clear, Enter and Insert. The number of displayed buttons and
their names can be changed. You send the programmed command to the host by clicking the
desired Power Pad button.

To program the Power Pad:

Select Options | Show Power Pad. The Power Pad appears.
Right-click the Power Pad button that you want to program. The Power Pad Button
dialog box appears.

18

3

4

5

Type the Button Description (that is, the name that will appear on the Power Pad
button).
Type the Script Commands to be run by this Power Pad button. For example:
send <f13>

You can type several scripts separated by semicolons.
Click OK. The Power Pad button is now displayed with its new name and will execute
the defined script.

19

PSL Reference

The following topics are described:

•
•

•

•

PowerTerm Sample Scripts, describes the standard scripts used in PowerTerm, below.
Activating Script Files from the Host, describes commands to activate a script file or script
commands via special escape sequences, below.
DDE Commands, describes the function of DDE commands for both client and server
application (Windows edition), page 20.
Alphabetical Reference, describes the syntax and provides examples for each PSL
command.

PowerTerm Sample Scripts

PowerTerm provides several sample scripts designed for frequent tasks. The following table lists
part of the sample scripts and their parameters. Additional sample scripts are also included as part
of PowerTerm.

Script Parameters Parameter Values
COMM.PSL Port number 1 – 32
 Baud rate All
 Protocol type none, xonxoff, hardware
TELNET.PSL Host name Specify the name of the host.
LAT.PSL Service name Specify the name of the service.
CTERM.PSL Node name Specify the name of the CTERM node.

Activating Script Files from the Host

A host application may activate a script file or script commands via special escape sequences.

Escape Sequences for VT

Activating a script file called Script-Name:
ESCP$sScript-NameESC\

An example activating the message.psl script:
ESCP$smessage.pslESC\

Activating script commands called Script-Commands:
ESCP$tScript-CommandsESC\

20

An example activating the “message testing; send end” commands:
ESCP$tmessage testing ; send endESC\

NOTE ESC is the ASCII 27 code.

Escape Sequences for DG

Activating a script file called Script-Name:
ESCWsScript-Name000

Activating script commands called Script-Commands:
ESCWtScript-Commands000

NOTE ESC is the ASCII 30 code, 000 is the ASCII 0 code.

DDE Commands (Windows edition)

PowerTerm enables you to use the standard Microsoft DDE mechanism to communicate with
other Windows applications. PowerTerm can be a DDE client application or a DDE server
application. The DDE server application waits for requests from DDE clients, and allows them to
supply it with information or receive information. For example if a spreadsheet DDE server will
let clients get data from cells and put data into cells of a file.

As a DDE server, PowerTerm uses the server name ptw with topic psl. Any application can
request it to execute commands and return the related return data.
A client application can access PowerTerm with the dde execute command or the dde request
command and an item that is any valid PSL command separated with semicolon (;). The single
DDE server PSL command is:
dde return value

After a DDE request command is executed, the PowerTerm DDE server sends the value from the
last DDE return command executed in this request. If no DDE return command was executed, it
returns an empty answer. Examples for PowerTerm as a DDE server might be:

Sending information to the host. •
• Reading information from the emulation screen.

As a DDE client, PowerTerm performs one of several DDE operations, depending on the option.
The legal options are:

dde initiate application Name
topicName

Connects to the applicationName DDE server with topicName.
Returns a conversation ID for use with successive DDE
commands.

dde execute convId
command

Executes a server command. Returns an empty string.

21

dde request conId item Returns an item from the server.

dde poke convId item value Changes an item of the server to the new value.

Returns an empty string.

dde terminate convId Terminates a DDE conversation with the server.

dde returns Returns a value according to the option.

Example 1:
Assigns three numbers on the emulation screen to array “cel”:
for {i=1}{$i<4}{incr i}{

 row=[expr $i+3]

 cel($i)=[screen-rect $row 10 $row 15]}

Initiates a DDE conversation with Microsoft Excel file TEST.XLS:
conv=[dde initiate EXCEL TEST.XLS]

Pokes the three numbers to three cels in TEST.XLS:
for{i=1}{$i<4}{incr i}{dde poke $conv R1C$I $cel ($i)}

Requests the sum of those numbers from a result cel in TEST.XLS:
sum=[dde request $conv “R2C1”]

Terminates the DDE conversation:
dde terminate $conv

Sends the result to the host application:
send $sum

Example 2:
Initiates a DDE conversation with another PowerTerm, which is connected to another computer.
Reads information from the screen (of the other host) and sends it to its own host:
conv=[dde initiate PTW PSL-B]

data=[dde request $conv{

 dde return[screen 10 1 15 80]}]

dde execute $conv{send joe}

For more explanations of the DDE commands, see the alphabetical commands reference on
following pages.

22

A

activate-menu-item
Description
Activates a PowerTerm menu item.

Syntax
activate-menu-item itemname

itemname Specifies the name of the PowerTerm menu it

Notes
If the name of the menu item is more than one word, it sho
See example below.
This command activates the specified menu item even if t

Returns
N/A

Example
To activate the PowerTerm Communication menu item la
activate-menu-item SendFile

To activate the PowerTerm File menu item labeled “Save
activate-menu-item SaveTerminalSetupAs

append
Description
Appends to a variable

Syntax
append varName value [value value ...]
em to be activated.

uld be specified without any spaces.

he menu item was removed.

beled “Send File”:

Terminal Setup As”:

23

varName Specifies name of a variable.

Notes
Appends all of the value arguments to the current value of variable varName. If varName does
not exist, it is given a value equal to the concatenation of all the value arguments.
This command provides an efficient way to build up long variables incrementally.

Returns
N/A

Example
The following line appends variables y and z to variable x:
append x $y $z

It is much more efficient, if $x is long, than:
x = xy$z

array

Description
Manipulates array variables.

Syntax
array option arrayName [arg arg ...]

option Specifies a valid option.
ArrayName Specifies the name of an existing array variable.

Notes
This command performs one of several operations on the variable given by arrayName.
ArrayName must be the name of an existing array variable. The option argument determines what
action is carried out by the command. A description of each valid option (which may be
abbreviated) follows:
array anymore arrayName
searched

•

•

•

•

Returns 1 if there are any more elements left to be
processed in an array search, 0 if all elements have already
been returned.
SearchId indicates which search on arrayName to check,
and must have been the return value from a previous
invocation of array startsearch. This option is particularly
useful if an array has an element with an empty name,
because the return value from array nextelement does not
indicate whether the search has been completed.

array donesearch arrayName
searched

This command terminates an array search and destroys all
the states associated with that search.
searchId indicates which search on arrayName to destroy,
and must have been the return value from a previous

24

invocation of array startsearch.
•

•

•

•

•

•

•

•

•

Returns an empty string.

array names arrayName Returns a list containing the names of all of the elements in
the array. If there are no elements in the array, then an
empty string is returned.

array nextelement arrayName
searched

Returns the name of the next element in arrayName, or an
empty string if all elements of arrayName have already
been returned in this search.
The searchId argument identifies the search, and must have
been the return value of an array startsearch command.
Warning: If elements are added to or deleted from the
array, then all searches are automatically terminated just as
if array donesearch had been invoked. This will cause array
nextelement operations to fail for those searches.

array size arrayName Returns a decimal string giving the number of elements in

the array.

array startsearch arrayName This command initializes an element-by-element search
through the array given by arrayName, such that
invocations of the array nextelement command will return
the names of the individual elements in the array.
The array donesearch command should be invoked, when
the search has been completed.
The return value is a search identifier that must be used in
array nextelement and array donesearch commands. It
allows multiple searches to be underway simultaneously for
the same array.

Returns
N/A

ascii-code

Description
Returns the ASCII code for the specified character.

Syntax
ascii-code character

character Specifies the character for which its ASCII code is returned.
Returns
N/A

25

Example
The following example will display the ASCII value for the character, which has the ASCII value
of 97:
get_ascii =[ascii-code a]

message $get_ascii

26

B

break
Description
Aborts a looping command.

Syntax
break

Notes
This command may be invoked only inside the body of a looping command such as for, foreach,
or while.

Returns
N/A

Example
break terminates the while loop when variable x equals 5:
x = 0

while {$x < 10}{

incr x

 if {$x == 5}

 break

 .

 .

 .

}

27

C

case

IMPORTANT The case command has been deprecated and is supported only for
backward compatibility. At some point in the future it may be removed entirely.
You should use the switch command instead.

Description
Evaluates one of several scripts, depending on a given value.

Syntax
case string in patList body patList body ...

string Compares to each of the patList arguments to find a match in the order that they appear.
patList Consists of a single pattern or list of patterns.

Notes
The case command matches string against each of the patList arguments in order. Each patList
argument is a list of one or more patterns. If any of these patterns matches string then case
evaluates the following body argument by passing it recursively to the interpreter and returns the
result of that evaluation. Each patList argument consists of a single pattern or list of patterns.
Each pattern may contain any of the wild cards described under string match. If a patList
argument is default, the corresponding body will be evaluated if no patList matches string. If no
patList argument matches string and no default is given, then the case command returns an empty
string.
Two syntaxes are provided for the patList and body arguments. The first uses a separate argument
for each of the patterns and commands. This form is convenient if substitutions are desired on
some of the patterns or commands. The second form places all of the patterns and commands
together into a single argument. The argument must have proper list structure, with the elements
of the list being the patterns and commands. The second form makes it easy to construct multi-
line case commands, since the braces around the whole list make it unnecessary to include a
backslash at the end of each line. Since the patList arguments are in braces in the second form, no
command or variable substitutions are performed on them. This makes the behavior of the second
form different than the first form in some cases.

Returns
N/A

Example
Returns ‘3’:

28

case abc in {a b} \

{format 1} default {format 2} a* {format 3}

Returns ‘1’:
.ta .5c 1c

case a in {

 {a b} {format 1}

 default {format 2}

 a* {format 3}

}

Returns ‘2’:
case xyz {

 {a b}

 {format 1}

 default

 {format 2}

 a*

 {format 3}

}

catch

Description
Evaluates script and traps exceptional returns.

Syntax
catch script varName

script Specifies the script that is run and scrutinized for errors.
varName Specifies the error message from interpreting script.

Notes
The catch command may be used to prevent errors from aborting command execution. catch
calls the interpreter recursively to execute script, and always returns without raising an error,
regardless of any errors that might occur while executing script.
If script raises an error, catch will return a non-zero integer value corresponding to one of the
exceptional return codes. If the varName argument is given, then the variable it names, is set to
the error message from interpreting script.
If script does not raise an error, catch will return 0 and set the variable to the value returned from
script.

29

catch catches all exceptions, including those generated by break and continue as well as errors.
The only errors that are not caught are syntax errors found when the script is compiled. This is
because the catch command only catches errors during runtime. When the catch statement is
compiled, the script is compiled as well and any syntax errors will generate an error.

Returns
Returns zero if there were no errors. Otherwise it will return a non-zero value corresponding to
one of the exceptional return codes.

Examples
The catch command may be used in an if statement to branch based on the success of a script.
if {[catch {open $someFile w} fid]}{

 puts stderr "Could not open $someFile for writing\n$fid"

 exit 1

}

The catch command will not catch compiled syntax errors. The first time proc foo is called, the
body will be compiled and an error will be generated.
proc foo {}{

 catch {expr {1 +- }}

}

cd

Description
Changes the working directory.

Syntax
cd dirName

dirName Specifies the name of the new current working directory.

Returns
Returns an empty string.

Example
Changes working directory to pterm:
cd pterm

30

clear screen
Description
Clears the screen.

Syntax
clear-screen

Returns
N/A

close
Description
Closes an open file.

Syntax
close fileId

fileId Specifies the file to be closed.

Notes
fileId must be the return value from a previous invocation of the open command. After this
command, it should not be used anymore.

Returns
The normal result of this command is an empty string, but errors are returned if there are
problems in closing the file.

Example
Opens file "sales.dat", reads 10 bytes, closes it, and displays the data in a message box:
fileId = [open sales.dat]

data = [read $fileId 10]

close $fileId

message $data

31

color
Description
Sets the foreground and background colors on a color graphics monitor, or switches output to the
color monitor.

Syntax
color {attributes}{foreground}{background}

Valid choices:
attributes normal
 dim
 bold
 blink
 reverse
 underline

background black
 magenta
 dark-gray
 dark-magenta
 blue
 cyan
 dark-blue
 dark-cyan
 red
 yellow
 dark-red
 dark-yellow
 green
 gray
 dark-green
 white

foreground black
 magenta
 dark-gray
 dark-magenta
 blue
 cyan
 dark-blue
 dark-cyan
 red
 yellow
 dark-red
 dark-yellow

32

 green
 gray
 dark-green
 white

Notes
On a system with both a color and monochrome display monitor, the color command switches
output from the mono to the color display.
The choice of attributes depends on the particular terminal emulation and its supported screen
attributes.

Returns
N/A
Example
To set the color to white characters on a blue background:
color normal white blue

concat

Description
Joins lists together.

Syntax
concat arg [arg ...]

Notes
This command treats each argument as a list and concatenates them into a single list.
It also eliminates leading and trailing spaces in the arguments and adds a single separator space
between arguments.
It permits any number of arguments.

Returns
Returns a single list with all elements.

Example
Returns {a b c d e f {g h}}:
concat a b {c d e} {f {g h}}

continue

Description
Skips to the next iteration of a loop.

33

Syntax
continue

Notes
This command may be invoked only inside the body of a looping command such as for, foreach,
or while.
It signals the innermost containing loop command to skip the remainder of the loop's body but to
continue with the next iteration of the loop.

Example
Skips over the while loop commands when variable x is less than 5.
x = 0

while {$x < 10} {

 incr x

 if {$x < 5}

 continue

 .

 .

 .

}

copy file

Description
Copies a file.

Syntax
copy-file existing-filename new-filename

existing-
filename

Specifies the name of the existing file.

new-
filename

Specifies the name of the new file.

Notes
If the new-filename exists, it will be overwritten.

Returns
N/A
Example
Copies a file named sales.dat and gave it the name Jerry_sales.dat:
copy-file sales.dat Jerry_sales.dat

34

copy from clipboard

Description
Returns current string from clipboard.

Syntax
copy-from-clipboard

Returns
N/A
Example
One word copied to clipboard:
copy-to-clipboard

a = [copy-from-clipboard]
message $a

copy to clipboard

Description
Copies designated text to clipboard.

Syntax
copy-to-clipboard text

text Specifies the string that is being copied to the clipboard.

Notes
If the specified text is more than one word long then it must be enclosed in quotation marks (“ ”).

Returns
Returns the content of the clipboard in a string format.
Example
One word copied to clipboard:
copy-to-clipboard schedules

Multiple words copied to clipboard:
copy-to-clipboard “Tom and Harold’s schedules”

35

cursor
Description
Moves the cursor to a new position.

Syntax
cursor row col

row Specifies the row position to where the cursor is to be positioned.
col Specifies the column position to where the cursor is to be positioned.

Notes
The cursor command changes the cursor position but does not send any indication to the host.

Returns
Returns an empty string.

Example
cursor 4 34

36

D

date

Description
Obtains the current date from the system.

Syntax
date
Returns
N/A
Example
a = [date]

message $a

dde execute

Description
Executes a server command.

Syntax
dde execute conv-id command-string

conv-id Specifies the returned value from the dde initiate command.
command-
string

Contains the desired dde command to be executed.

Returns
Returns an empty string.

Example
conv = [dde execute EXCEL TEST.XLS]

37

dde initiate

Description
Connects to the applicationName DDE server with topicName.

Syntax
dde initiate applicationName topicName

applicationName Specifies the application to which PowerTerm is connecting.
topicName Specifies the field designator (in Excel) or a paragraph or item (in WORD).

Returns
Returns a conversation id for use with successive dde commands.

Example
Launches EXCEL and displays the PRODUCTS spreadsheet:
conv = [dde initiate EXCEL PRODUCTS.XLS]

dde poke
Description
Inserts designated value(s) into specified location in server program.

Syntax
dde poke convId item value

convId Specifies the returned value from the dde initiate command.
Item Specifies the string containing the item ID that a change in value is requested.
value Specifies the string containing the desired value.

Returns
Returns an empty string.

Example
Pokes the three numbers to three cells in TEST.XLS.
for {i = 1}{$i < 4}{incr i}{dde poke $conv R1C$i $cel($i)}

dde server topic

Description
Returns an item from the server when a client attempts to connect to it with a given topic.

38

Syntax
dde server-topic application topic script-name

application Specifies to which server to connect to using the DDE protocol.
topic Specifies the string containing the desired topic.
script-name Specifies the string, which contains the method that should run on the server.

Notes
The server name is usually the name of the program itself, without the .exe extension. For more
information about the syntax of dde macros, and its defined topic names, see page 20 or consult
Microsoft documentation on the topic.
Returns
If the server recognizes the topic, a method specializing on the server should return an instance of
one of the server's topic classes.
If the server does not recognize the topic, the method should return an empty string.

Example
If an application implements a topic for each open file, the topics foo, foo.doc and c:\foo.doc
may all be acceptable strings for referring to the same topic. However dde-server-topics should
return each topic once only.

display
Description
Displays a string on the current cursor position.

Syntax
display string

string Specifies the string that is being displayed.

Notes
The display command displays the string on the screen, but does not send it to the host.

Returns
Returns an empty string.

Example
display "Hit ENTER to continue"

39

E

eof
Description
Checks the end-of-file condition on an open file.

Syntax
eof fileId

fileId Specifies the name of requested file upon which the end-of-file condition is checked.

Return
Returns 1 if an end-of-file condition occurred on fileId, otherwise 0.
fileId must have been the return value from a previous call to open.

Example
Opens file input.dat for reading and file output.dat for writing. While not end-of-input file, reads
a line and writes it to the output file. Closes both files.
inFile = [open input.dat]

outFile = [open output.dat w]

gets $inFile data

while {! [eof $inFile]} {

 puts $outFile $data

 gets $inFile data

}

close $inFile

close $outFile

error
Description

40

Generates an error.

Syntax
error message [info] [code]

message Specifies the error message that is displayed.
info Contains the information that is used to initialize the global variable errorInfo.
code Contains machine-readable description of the error in cases where such information

is available.

Notes
If the info argument is provided and is non-empty, it is used to initialize the global variable
errorInfo. errorInfo is used to accumulate a stack trace of what was in progress when an error
occurred. As nested commands unwind, the interpreter adds information to errorInfo. If the info
argument is present, it is used to initialize errorInfo and the first increment of unwind
information will not be added by the interpreter. In other words, the command containing the
error command will not appear in errorInfo. In its place will be info. This feature is most useful
in conjunction with the catch command: If a caught error cannot be handled successfully, info can
be used to return a stack trace reflecting the original point of occurrence of the error:
catch {...} errMsg

set savedInfo $errorInfo

 ...

error $errMsg $savedInfo

If the code argument is present, then its value is stored in the errorCode global variable. If the
code argument is not present, then errorCode is automatically reset to NONE by the interpreter
as part of processing the error generated by the command.

Returns
Returns a TCL_ERROR code, which causes command execution to be unwound. message is a
string that is returned to the application to indicate what went wrong.

eval
Description
Evaluates a PSL script.

Syntax
eval arg [arg ...]

arg Specifies parameter to be used with the command.

Notes
eval takes one or more arguments, which together comprise a PSL script containing one or more
commands.
eval concatenates all its arguments in the same fashion as the concat command and passes the
concatenated string to the PowerTerm PSL engine recursively.

41

Returns
Returns the result of the evaluation or any error generated by it.

Example
Assigns command variable with the expr command, executes the command, and displays its
output:
command = "expr 3 * 8"

result = [eval $command]

message $result

exec
Description
Invokes a program.

Syntax
exec program

program Specifies the program to be activated

Notes
This command executes a program. The program variable may contain parameters.

Returns
N/A

Example
Activates the Notepad program with parameter pt.psl:
exec "notepad pt.psl"

exit emulator

Description
Closes the PowerTerm emulation program.

Syntax
exit-emulator

Returns
N/A

42

exit script

Description
Interrupts the currently running PSL script.

Syntax
exit-script

Notes
A confirmation message is displayed.

Returns
N/A
Example
The following will launch WordPad and then exit the script by displaying a confirmation screen
before the script displays a message:
exec wordpad

exit-script

message Completed!

expr
Description
Evaluates an expression.

Syntax
expr arg [arg arg ...]

arg Specifies which expression to be evaluated.

Notes
Concatenates args while adding separator spaces between them, evaluates the result as a PSL
expression, and returns the value.
The operators permitted in PSL expressions are a subset of the operators permitted in the C
language expressions, and they have the same meaning and precedence as the corresponding C
language operators. Expressions almost always yield numeric results (integer or floating-point
values). PSL expressions support non-numeric operands and string comparisons. For example, the
command
expr 8.2 + 6

evaluates to 14.2.

A PSL expression consists of a combination of operands, operators, and parentheses. White
space may be used between the operands and operators and parentheses. The expression
processor ignores it.

43

Operands
Operands can be interpreted as:

integer values Most common. May be specified in

•
•
•

•
•

•

•

•

•

decimal which is the normal case
octal if the first character of the operand is 0
hexadecimal if the first two characters of the operand are
0x

floating-point number An operand is treated as a floating-point number, if possible,

and when it does not have one of the integer formats. They may
be specified in any of the ways accepted by an ANSI-compliant
C language compiler, except that the f, F, l, and L suffixes will
not be permitted in most installations. For example, all of the
following are valid floating-point numbers:
2.1, 3., 6e4, 7.91e+16

string An operand is left as a string when no numeric execution is
possible.
Only a limited set of operators may be applied to it.

Operands may be specified in any of the following ways:
As a numeric value, either integer or floating-point.
As a PSL variable, using standard $ notation. The variable's value will be used as the
operand.
As a string enclosed in double-quotes. The expression parser will perform backslash,
variable, and command substitutions on the information between the quotes, and use the
resulting value as the operand.
As a string enclosed in braces. The characters between the open brace and matching close
brace will be used as the operand without any substitutions.
As a PSL command enclosed in brackets. The command will be executed and its result will
be used as the operand.
As a mathematical function whose arguments have any of the above forms for operands,
such as sin($x). See below for a list of defined functions.

Where substitutions occur above (for example, inside quoted strings), they are performed by the
expression processor. However, the command parser may already have performed an additional
layer of substitution before the expression processor was called. As discussed below, it is usually
best to enclose expressions in braces to prevent the command parser from performing
substitutions on the contents. For example, the variable x has the value 3 and the variable y has
the value 6. The command on the left side of each of the lines below will produce the value on the
right side of the line:
expr 3.1 + $x 6.1

expr 2 + "$x.$y" 5.6

expr 4 * [llength "6 2"] 8

expr {word one} < "word $x" 0

44

Operators
The valid operators are listed below, grouped in decreasing order of precedence:
-
~
!

Unary minus, bit-wise NOT, logical NOT.
•
•

•
•

•

•

•

•

•
•

•

•

•

•

•

•
•

None of these operands may be applied to string operands.
Bit-wise NOT may be applied only to integers.

*
/
%

Multiply, divide, remainder.
None of these operands may be applied to string operands.
Remainder may be applied only to integers. The remainder
will always have the same sign as the divisor and an
absolute value smaller than the divisor.

+
-

Add and subtract.
Valid for any numeric operands.

<<
>>

Left and right shift.
Valid for integer operands only.

<
>
<=
>=

Boolean less, greater, less than or equal, and greater than or
equal.

Each operator produces 1 if the condition is true, 0
otherwise.
These operators may be applied to strings as well as
numeric operands, in which case string comparison is used.

==
!=

Boolean equal and not equal.
Each operator produces a zero/one re
Valid for all operand types.

& Bit-wise AND.

Valid for integer operands only.

^ Bit-wise exclusive OR.
Valid for integer operands only.

| Bit-wise OR.

Valid for integer operands only.

&& Logical AND.
Produces a 1 result if both operands are non-zero, 0
otherwise.
Valid for numeric operands only (integers or floating-
point).

|| Logical OR.

Produces a 0 result if both operands are zero, 1 otherwise.
Valid for numeric operands only (integers or floating-
point).

45

x ? y : z If-then-else, as in the C language.
•

•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

If x evaluates to non-zero, then the result is the value of y.
Otherwise, the result is the value of z.
The x operand must have a numeric value.

For more details on the results produced by each operator, see the C language manual.

All of the binary operators, group left-to-right within the same precedence level. For example, the
command:
expr 4 * 2 < 7

returns 0.

The &&, ||, and ?: operators have “lazy evaluation”, just as in C, which means that operands are
not evaluated if they are not needed to determine the outcome. For example, in the command:
expr {$z ? [x] : [y]}

only one of [x] or [y] will actually be evaluated, depending on the value of $z. However, this is
only true if the entire expression is enclosed in braces. Otherwise, PSL will evaluate both [x] and
[y] before invoking the expr command.

Mathematical functions
PSL supports the following mathematical functions in expressions:
 acos
 asin
 atan
 atan2
 ceil
 cos
 cosh
 exp
 floor
 fmod
 hypot
 log
 log10
 pow
 sin
 sinh
 sqrt
 tan
 tanh

Each of these functions invokes the C language math library function of the same name.

Conversion Functions
PSL also implements functions for conversion between integers and floating-point numbers.
These functions are:
abs(arg) Returns the absolute value of arg. arg may be either integer or

floating-point, and the result is returned in the same form.

46

double(arg) If arg is a floating value, returns arg. Otherwise, converts arg

to floating and returns the converted value.

int(arg) If arg is an integer value, returns arg. Otherwise, converts arg
to integer by truncation and returns the converted value.

round(arg) If arg is an integer value, returns arg. Otherwise, converts arg
to integer by rounding and returns the converted value.

Types, Conversion and Precision
Conversion among internal representations for integer, floating-point, and string operands is done
automatically as needed.
For arithmetic computations, integers are used until some floating-point number is introduced,
after which floating-point is used.
For example:
expr 5 / 4

returns 1, while
expr 5 / 4.0

expr 5 / ([string length "abcd"] + 0.0)

both return 1.25.
Floating-point values are always returned with a "." or an "e" so that they will not look like
integer values.
For example:
expr 20.0/5.0

returns "4.0", not "4".

String Operations
String values may be used as operands of the comparison operators, although the expression
evaluator tries to do comparisons as integer or floating-point when it can.
If one of the operands of a comparison is a string and the other has a numeric value, the numeric
operand is converted back to a string.
For example, the following commands both return 1. The first comparison is done using integer
comparison, and the second is done using string comparison after the second operand is converted
back to the string "18".
expr "0x03" > "2"

expr "0y" < "0x12"

47

F

file
Description
Manipulates file names and attributes.

Syntax
file option name [arg arg ...]

option Indicates what to do with the file name. Any unique abbreviation for

option is acceptable.
name Specifies the name of a file to which its name and attributes are to be

manipulated.

Returns
This command provides several operations on a file's name or attributes. The valid options are:

file atime name Returns a decimal string giving the time at which name was last

accessed.
•

•

•
•

•

The time is measured in the standard POSIX fashion as
seconds from a fixed starting time (often January 1, 1970).
If the file does not exist or its access time cannot be
queried, then an error is generated.

file dirname name Returns all of the characters in name up to but not including the

last slash character.
If there are no slashes in name, then returns dot (.).
If the last slash in name is its first character, then returns
"\".

file exists name Returns 1 if name exists, 0 otherwise.

file extension name Returns all of the characters in name after and including the last

dot (.).
If there is no dot in name, then returns the empty string.

file isdirectory name Returns 1 if name is a directory, 0 otherwise.

file isfile name Returns 1 if name is a regular file, 0 otherwise.

48

file mtime name Returns a decimal string giving the time at which name was last

modified.
•

•

•

•

•

•

•

•

•

The time is measured in the standard POSIX fashion as
seconds from a fixed starting time (often January 1, 1970).
If the file does not exist or its modified time cannot be
queried, then an error is generated.

file rootname name Returns all of the characters in name up to but not including the

last dot (.) character in the name.
If name does not contain a dot, then returns name.

file size name Returns a decimal string giving the size of name in bytes.

If the file does not exist or its size cannot be queried, then
an error is generated.

file stat name varName Returns an empty string.

Invokes the stat system call on name, and uses the variable
given by varName to hold information returned from the
system call.
varName is treated as an array variable, and the following
elements of that variable are set: atime, ctime, dev, mode,
mtime, size, type.
Each element except type is a decimal string with the value
of the corresponding field from the stat return structure.
The type element gives the type of the file in the same form
returned by the command file type.

file tail name Returns all of the characters in name after the last backslash.

If name contains no backslashes, then returns name.

file type name Returns a string giving the type of name, which will be either
file or directory.

flush
Description
Flushes buffered output for a file.

Syntax
flush file

file Specifies the return value from a previous call to open.

Returns
Returns an empty string.

49

Example
Opens file sales.dat for writing. Writes 10 lines, flushes data to file, and then closes the file.
fileId = [open sales.dat w]

for {i = 0} {$i < 10} {incr i} {puts $fileId "Line no $i"}

flush $fileId

close $fileId

for
Description
Executes a for loop.

Syntax
for start test next body

start Initializes the loop variable.
test Specifies the condition that must be met for the loop to end.
next Specifies the increment for the loop variable.
body Specifies the PSL command to be executed.

Notes
for is a looping command, similar in structure to the C language for statement. The start, next,
and body arguments must be PSL command strings, and test is an expression string.
The for command first invokes PSL to execute start. Then it repeatedly evaluates test as an
expression.
•

•

•

If the result is non-zero it invokes PSL on body, then invokes PSL on next, then repeats the
loop. The command terminates when test evaluates to 0.
If a continue command is invoked within body, then any remaining commands in the current
execution of body are skipped, processing continues by invoking PSL on next, then
evaluating test, and so on.
If a break command is invoked within body or next, then the for command will return
immediately.

The operation of break and continue are similar to the corresponding statements in the C
language.

Returns
Returns an empty string.

Example
Executes the message command 10 times:
for {i = 1}{$i <= 10}{incr i}{message "i = $i"}

50

foreach
Description
Iterates over all elements in a list.

Syntax
foreach varname list body

varname Specifies the name of a variable.
list Specifies a list of values to assign to varname.
body Specifies the PSL command to be executed.

Notes
For each element of list (in order from left to right), foreach assigns the contents of the field to
varname as if the index command had been used to extract the field, then calls the PowerTerm
PSL engine to execute body. The break and continue statements may be invoked inside body,
with the same effect as in the for command.

Returns
Returns an empty string.

Example
For each item in the list, a message is displayed:
foreach var {Item1 Item2 Item3}{message "Item : $var"}

format
Description
Formats a string in the style of sprintf.

Syntax
format formatString [arg arg ...]

formatString Indicates how to format the result, using % conversion specifiers as in

sprintf, and the additional arguments, if any, provide values to be substituted
into the result.

Notes
This command generates a formatted string in the same way as the ANSI C sprintf procedure.

Returns and Formatting
The return value is the formatted string.

The command operates by scanning formatString from left to right. Each character from the
format string is appended to the result string unless it is a percent sign.

51

•

•

•
•
•
•
•

•

•

•

•

•

•

If the character is "%", then it is not copied to the result string. Instead, the characters
following the % character are treated as a conversion specifier.
The conversion specifier controls the conversion of the next successive arg to articular
format, and the result is appended to the result string in place of the conversion specifier.
If there are multiple conversion specifiers in the format string, then each one controls the
conversion of one additional arg.

The format command must be given enough args to meet the needs of all of the conversion
specifiers in formatString.
Each conversion specifier may have another five fields:

A set of flags
A minimum field width
A precision
A length modifier
A conversion character

Any of these fields may be omitted except for the conversion character. The fields that are present
must appear in the order given above. The paragraphs below discuss each of these fields in turn.

If the % is followed by a decimal number and a $, as in "%2$d", then the value to convert is
not taken from the next sequential argument. Instead, it is taken from the argument indicated
by the number, where 1 corresponds to the first arg.
If the conversion specifier requires multiple arguments because of * characters in the
specifier, then successive arguments are used, starting with the argument given by the
number.
If there are any positional specifiers in formatString, then all of the specifiers must be
positional.

The available flag character options are:

\- Specifies that the converted argument should be left-justified in

its field (numbers are normally right-justified with leading
spaces if needed).

+ Specifies that a number should always be printed with a sign,
even if positive.

space Specifies that a space should be added to the beginning of the
number if the first character is not a sign.

0 Specifies that the number should be padded on the left with
zeros instead of spaces.

Requests an alternate output form.
For o and O conversions, it guarantees that the first digit is
always 0.
For x or X conversions, 0x or 0X (respectively) will be
added to the beginning of the result unless it is zero.
For all floating-point conversions (e, E, f, g, and G), it

52

guarantees that the result always has a decimal point.
•

•

•

For g and G conversions, it specifies that trailing zeros
should not be removed.

The minimum field width is determined by a number. It is typically used to make columns line
up in tabular printouts.

If the converted argument contains fewer characters than the minimum field width then it will
be padded so that it is as wide as the minimum field width.
Padding normally occurs by adding extra spaces on the left of the converted argument, but
the 0 and \- flags may be used to specify padding with zeros on the left or with spaces on the
right, respectively.
If the minimum field width is specified as * rather than a number, then the next argument to
the format command determines the minimum field width; it must be a numeric string.

The precision portion of a conversion specifier consists of a period followed by a number. The
number is used in different ways for different conversions:

e , E, and f conversions Specifies the number of digits to appear to the right of the

decimal point.

g and G conversions Specifies the total number of digits to appear, including those
on both sides of the decimal point. However, trailing zeros after
the decimal point will still be omitted unless the # flag has been
specified.

integer conversions Specifies a minimum number of digits to print. Leading zeros
will be added if necessary.

s conversions Specifies the maximum number of characters to be printed. If
the string is longer than this, then the trailing characters will be
dropped.

If the precision is specified with * rather than a number then the next argument to the format
command determines the precision, it must be a numeric string.

The length modifier is one of the following:
h Specifies that the numeric value should be truncated to a 16-bit

value before converting. This option is rarely useful.

l The modifier is ignored.

The alphabetic character determines what kind of conversion to perform. The following
conversion characters are currently supported:

d Convert integer to signed decimal string.

u Convert integer to unsigned decimal string.

i Convert integer to signed decimal string. The integer may be in

decimal, in octal (with a leading 0), or in hexadecimal (with a
leading 0x).

53

o Convert integer to unsigned octal string.

x or X Convert integer to unsigned hexadecimal string, using digits

"0123456789abcdef" for x and "0123456789ABCDEF" for X.

c Convert integer to the 8-bit character it represents.

s No conversion, just insert string.

f Convert floating-point number to signed decimal string of the
form xx.yyy, where the number of y's is determined by the
precision.
•
•

•
•
•

•

Default: 6.
If the precision is 0, then no decimal point is output.

e or E Convert floating-point number to scientific notation in the form

x.yyye+-zz, where the number of y's is determined by the
precision.

Default: 6.
If the precision is 0, then no decimal point is output.
If the E form is used, then E is printed instead of e.

g or G If the exponent is less than \-4 or greater than or equal to the

precision, then convert floating-point number as for %e or %E.
Otherwise, convert as for %f.

Trailing zeros and a trailing decimal point are omitted.

% No conversion, just insert %.

For the numerical conversions, the argument being converted must be an integer or floating-
point string. format converts the argument to binary and then converts it back to a string
according to the conversion specifier.

func

Description
Creates, labels and provides the script for designated function buttons.

Syntax
func buttonlabel action

buttonlabel Specifies the label on the function button.
action Specifies the script to be performed when the function button is pressed.

Returns
N/A

54

Example
This example will create 2 functions buttons:
func 1 Greeting1 “send Hello”

func 2 Greeting2 “send goodbye”

55

G

get
Description
Returns an integer/string from a PowerTerm object.

Returns
get col Returns the column number where the cursor is located in the

emulation screen.
x = [get col]

message $x

get row Returns the row number where the cursor is located in the

emulation screen.
x = [get row]

message $x

get session-count Returns the number of opened sessions in the current

executable.
x = [get session-count]

message $x

get caps-lock Returns 0 (off) or 1 (on).

x = [get caps-lock]

message $x

get answerback-message Returns the answerback string message.

x = [get answerback-message]

message $x

get modem-name Returns a string containing the name of the modem currently in

use.

56

x = [get modem-name]

message $x

get modem-init-string Returns the initialization string for the modem currently in use.

x = [get modem-init-string]

message $x

get printer-name Returns string containing the name of the current default

printer.
x = [get printer-name]

message $x

getenv

Description
Retrieves the value of an environment variable.
getenv searches the environment list for a string of the form name=value, and returns a pointer to
the value in the current environment if such a string is present, otherwise a NULL pointer.

Syntax
getenv environment-variable

environment-
variable

Specifies the string, which is the object of the search in the current environment list.

Returns
Returns a pointer to static data, which can be overwritten by subsequent calls.

get printer name
Description
Retrieves the default printer name.

Syntax
get-printer-name

Returns
Returns the string representing the default printer.

57

gets
Description
Retrieves a file.

Syntax
gets fileId [varName]

fileId Specifies the name of requested file.
varName Specifies the variable name to which the string (line from the file) will be inserted.

Notes
This command reads the next line from the file given by file and discards the terminating newline
character.
•

•

•

•

If varName is specified, then the line is placed in the variable by that name and the return
value is a count of the number of characters read, not including newline.
If the end of the file is reached before reading any characters, then (-1) is returned and
varName is set to an empty string.
If varName is not specified, then the return value will be the line (minus the newline
character) or an empty string if the end of the file is reached before reading any characters.
An empty string will also be returned if a line contains no characters except the newline, so
eof may have to be used to determine what really happened.
If the last character in the file is not a newline character, then gets behaves as if there were an
additional newline character at the end of the file.

file must be the return value from a previous call to open. It must refer to a file that was opened
for reading.

Returns
Returns the line length, if varName is specified, or the line itself.

Example
Gets first line from sales.dat file:
fileId = [open sales.dat]

gets $fileId data

close $fileId

glob
Description
Returns names of files that match patterns.

Syntax
glob switches [pattern pattern ...]

switches Specifies the option for the command.

58

Notes
This command performs file name "globbing" in a fashion similar to the CSH shell. If the initial
arguments to glob start with “-“ then they are treated as switches. The following switches are
currently supported:
-nocomplain Allows an empty list to be returned without error. Without this

switch, an error is returned if the result list would be empty.

-- Marks the end of switches. The argument following this one
will be treated as a pattern even if it starts with a "-".

The pattern arguments may contain any of the following special characters:

? Matches any single character.

* Matches any sequence of zero or more characters.

[chars] Matches any single character in chars.

•

•

If chars contains a sequence of the form a-b, then any
character between a and b (inclusive) will match.

x Matches the character x.

{a,b,...} Matches any of the strings a, b, etc.

As with CSH, a dot (.) at the beginning of a file's name or
just after a "\" must be matched explicitly or with a {}
construct. In addition, all "\" characters must be matched
explicitly.

Returns
Returns the files list of the files whose names match any of the pattern arguments.

Example
Displays all files with ".dat" extension:
message [glob *.dat]

global
Description
Accesses global variables.

Syntax
global varname [varname ...]

varname Specifies the names of the variables to be declared as global.

59

Notes
This command is ignored unless a PSL procedure is being interpreted. If so, then it declares the
given varnames to be global variables rather than local ones. For the duration of the current
procedure (and only while executing in the current procedure), any reference to any of the
varnames will refer to the global variable by the same name.

Returns
Returns an empty string.

Example

global varname1 varname2

60

H

history
Description
Manipulates the history list.

Syntax
history [option] [arg] [arg ...]

option Specifies in which particular manner the command operates.

Notes
The history command performs one of several operations related to recently executed commands
recorded in a history list. Each of these recorded commands is referred to as an “event”. When
specifying an event to the history command, the following forms may be used:

•

•

•

•

•

A number If positive, it refers to the event with that number (all events are numbered
starting at 1). If the number is negative, it selects an event relative to the current event (-1
refers to the previous event, -2 to the one before that, and so on). Event 0 refers to the current
event.
A string Selects the most recent event that matches the string. An event is considered to
match the string either if the string is the same as the first characters of the event, or if the
string matches the event in the sense of the string match command.

Returns
The history command can take any of the following forms:

history Same as history info, described below.

history add command exec Adds the command argument to the history list as a new event.

If exec is specified or abbreviated then the command is also
executed and its result is returned.
If exec isn't specified then an empty string is returned as
result.

history change newValue
event

Replaces the value recorded for an event with newValue. event
specifies the event to replace, and defaults to the current event
(not event -1).

This command is intended for use in commands that

61

implement new forms of history substitution and wish to
replace the current event, which invokes the substitution,
with the command created through substitution.

•

•

•

•

•
•

•
•

•

The return value is an empty string.

history event event Returns the value of the event given by event.
event defaults to -1.

history info count Returns a formatted string, intended to be read, giving the event

number and contents for each of the events in the history list
except the current event.

If count is specified then only the most recent count events
are returned.

history keep count This command may be used to change the size of the history list

to count events. Initially, 20 events are retained in the history
list.

If count is not specified, the current keep limit is returned.

history nextid Returns the number of the next event to be recorded in the
history list. It is useful for things like printing the event number
in command-line prompts.

history redo event Re-executes the command indicated by event, and returns its
result.

event defaults to -1.
This command results in history revision.

history substitute
oldhistorybuffer
newhistorybuffer event

Replaces the old history with the new one that which is
indicated by event and returns its result.

event defaults to -1.
This command results in history revision.

history words number-pat
event

Returns the value of the event given by event.
event defaults to -1.

62

I

if
Description
Executes scripts conditionally.

Syntax
if expr1 [then] body1 [elseif expr2 [then] body2] [elseif ...] [else] bodyN

expr1 Specifies the expression that is evaluated.
body1 Executed by passing it to the PowerTerm PSL engine if expr1 is true.
expr2 Specifies the expression that is evaluated.
body2 Executed by passing it to the PowerTerm PSL engine if expr2 is true.

Notes
The if command evaluates expr1 as an expression (in the same way that the expr command
evaluates its argument). The value of the expression must be a boolean (a numeric value, where 0
is false and anything else is true, or a string value such as true or yes for true, and false or no for
false). If it is true, then body1 is executed by passing it to the PowerTerm PSL engine. Otherwise,
expr2 is evaluated as an expression and if it is true, then body2 is executed, and so on. If none of
the expressions evaluates to true, then bodyN is executed.

The then and else arguments are optional, to make the command easier to read. There may be any
number of elseif clauses, including zero. bodyN may also be omitted as long as else is omitted
too.

Returns
The return value from the command is the result of the body script that was executed, or an empty
string, if none of the expressions were non-zero and there was no bodyN.

Example
Displays "yes" if variable host equals vax, or "no" if it is not:
if {$host == "vax"} {message "yes"} else {message "no"}

63

incr
Description
Increments the value of a variable.

Syntax
incr varName next

varName Specifies the name of the variable.
next Specifies the increment for the loop variable.

Notes
Increments the value stored in the variable whose name is varName. The value of the variable
must be an integer. If increment is supplied, then its value (which must be an integer) is added to
the value of variable varName; otherwise, 1 is added to varName.
The new value is stored as a decimal string in variable varName and also returned as result.

Returns
Returns the new varName value.

Example
Uses the incr command to increase for loop counter:
for {i = 0} {$i < 10} {incr i} {commands...}

indfile

Description
Transfers an IND$FILE file.

Syntax
indfile (put | get | set) local-file remote-file [cms | tso | cics] [ascii yes | no] [crlf yes |

no] [convert yes | no] [append | overwrite] [default | fixed | variable | undefined]
[tracks | cylinders | avblocks] [lrecl \"size\"] [block-size \"size\"] [space
\"space1\" \"space2\"] [options \"options\"] [program \"name\"]

Note Underline indicates the parameter’s default value.

File Transfer Action (put | get | set)

put Sends the file from the PC to the host.
get PC receives file from the host.
set Mandatory.

Designates the parameters prior to any file transfer action.

64

File Names local-file remote-file

•
•

•

•

•
•

•

•

•

•

•

•

•
•

•
•

Both parameters must be supplied, however they do not have to be identical.
If the full path is included, then it should appear in quotation marks. For example:
“c:\\license.txt"
The name of the file refers to that which will be transferred:

Communication Protocol Type options:

Default: cms.

File Conversion options:

ascii yes | no Specifies converting the file to ASCII format.

Default: no.

crlf yes | no For ASCII files (but not for binary files), CR/LF processing is typically
appropriate.
Specifies deleting a carriage return character and a linefeed character
from the end of each line of the file you are sending, or adding them to
the end of each line of the file you are receiving from the host.
Default: no.

convert yes | no Specifies converting the file according to the format specifications that

appear in the ptdef.pts file.
If the convert parameter is set to yes, then the following arguments will
be referenced from this file:
File-Transfer-Host-Data-Type = Host

File-Transfer-PC-Data-Type = Windows

File-Transfer-Convert-Data = Off

Default: no

File Creation options:

append Default

Specifies appending the transferred file onto the existing file of same
name.

overwrite Specifies that the transferred file overwrite the existing file of same name.

Record Format options:

default Default.

Specifies the Default Record Format for the file residing on the
mainframe.

65

fixed Specifies the Fixed Record Format for the file residing on the mainframe.

variable Specifies Variable Record Format for the file residing on the mainframe.

undefined Specifies Undefined Record Format for the file residing on the mainframe.

Allocation Units options:

The primary and secondary space allocations are measured in track, cylinder, or average block
units. Each type is represented by one of the following fields:
tracks •

•

•

•
•
•

•

•

•

•

Default.
Specifies Tracks as the allocation unit of disk space.

cylinders Specifies Cylinders as the allocation of disk space.

avblocks Specifies the size (in blocks) for an average block. This is relevant only

where you are using blocks as your allocation unit.

Other options:

 [lrecl “size”]
(Logical Record
Length)

Specifies the record size (in bytes) for the file being created on the host.
For ASCII files, set this value to accommodate the longest line in your
file.
Range of values: 0 and 32768
Range default value: 0
Lines default: lines of up to 80 characters.

[block-size
“size”]

Specifies the block size (in bytes) for the file being created on the host.
For files with fixed-length records, this value must be a multiple of the
LRECL (Logical Record Length).
Default value: 0

[space “space1”
“space2”]

Specifies the size (in allocation units) of the primary and secondary
allocation for the host file being created. In the event that the primary
allocation is insufficient, then a secondary allocation is used.
If the default is not used, then both primary and secondary allocations
must be specified.

options Specifies any parameters specific to the IND$FILE program on your host

system. The value of the parameter is attached to the end of the transfer
command.

program Specifies the name of the host program to be utilized by PowerTerm to
initiate a file transfer.

Notes
All of the commands parameters can be modified in the ptdef.pts file under the [3270 IND$FILE]
heading.

Returns

66

If the command succeeds the return value is True otherwise it is False.

Example
Receives a file named xyz.a from the host and renames it ab.psl on the PC:
indfile get ab.psl xyz.a

Receives a file named curbudgt.a, from the host and renames it ltbudgt.a and converts it to an
ASCII format on the PC. cms is the communication protocol implemented. File conversion
occurs when the file is appended onto the existing file of the same name. The record format is
fixed and its allocation unit is tracks. The length of the record is 4000 while its block size is
8000. Its primary allocation size for the host file being created is 1, while the secondary
allocation size is 2:
indfile put curbudgt.a ltbudgt.a cms ascii yes crlf yes convert
yes append fixed tracks lrecl "4000" block-size "8000" space “1”
“2”

info
Description
Returns information about the state of the PSL interpreter.

Syntax
info option [arg arg ...]

option Specifies the mode for the command.

Notes
This command provides information about various internals of the PSL interpreter.
The legal options (which may be abbreviated) are:

info args procname Returns a list containing the names of the arguments to

procedure procname, in order. procname must be the name of a
PSL command procedure.

info body procname Returns the body of procedure procname. procname must be
the name of a PSL command procedure.

info cmdcount Returns a count of the total number of commands that have
been invoked in this interpreter.

info commands [pattern] If pattern is not specified, returns a list of names of all the PSL
commands, including both the built-in commands and the
command procedures defined using the proc command. If
pattern is specified, only those names matching pattern are
returned. Matching is determined using the same rules as for
string match.

67

info complete command Returns 1 if command is a complete PSL command in the sense
of having no unclosed quotes, braces, brackets or array element
names, If the command does not appear to be complete, then 0
is returned. This command is typically used in line-oriented
input environments to allow users to type in commands that
span multiple lines; if the command is not complete, the script
can delay evaluating it until additional lines have been typed to
complete the command.

info default procname arg
varname

procname must be the name of a PSL command procedure and
arg must be the name of an argument to that procedure. If arg
does not have a default value, then the command returns 0.
Otherwise, it returns 1 and places the default value of arg into
variable varname.

info exists varName Returns 1 if the variable named varName exists in the current
context (either as a global or local variable), returns 0
otherwise.

info globals [pattern] If pattern is not specified, returns a list of all the names of
currently defined global variables. If pattern is specified, only
those names matching pattern are returned. Matching is
determined using the same rules as for string match.

info level [number] If number is not specified, this command returns a number
giving the stack level of the invoking procedure, or 0 if the
command is invoked at top-level. If number is specified, then
the result is a list consisting of the name and arguments for the
procedure call at level number on the stack. If number is
positive, then it selects a particular stack level (1 refers to the
top-most active procedure, 2 to the procedure it called, and so
on); otherwise, it gives a level relative to the current level (0
refers to the current procedure, -1 to its caller, and so on). See
the uplevel command for more information on what stack
levels mean.

info library Returns the name of the library directory in which standard PSL
scripts are stored. The default value for the library is "lib", but
it may be overridden by setting the PSL_LIBRARY
environment variable.

info locals [pattern] If pattern is not specified, returns a list of all the names of
currently defined local variables, including arguments to the
current procedure, if any. Variables defined with the global and
upvar commands will not be returned. If pattern is specified,
only those names matching pattern are returned. Matching is
determined using the same rules as for string match.

info procs [pattern] If pattern is not specified, returns a list of all the names of PSL
command procedures. If pattern is specified, only those names
matching pattern are returned. Matching is determined using

68

the same rules as for string match.

info script If a PSL script file is currently being evaluated, then this
command returns the name of the innermost file being
processed. Otherwise, the command returns an empty string.

info vars [pattern] If pattern is not specified, returns a list of all the names of
currently visible variables, including both locals and currently
visible globals. If pattern is specified, only those names
matching pattern are returned. Matching is determined using
the same rules as for string match.

Returns
Returns the appropriate info value.

Example
Displays “yes” if variable varName exists, otherwise “no”:
if {[info exists varName] == "vax"} {message "yes"} else {message
"no"}

input line

Description
Displays a dialog box enabling user input, which is then returned to the script.
Syntax
input-line groupboxtext titlebar inputstring

groupboxtext Specifies the text that appears above the group box.
titlebar Specifies the text that appears in the dialog box’s title bar.
inputstring Specifies the string, which will be returned to the script.

Return
The inputstring is default and can be overwritten by the user.
Example
input-line Your Name Verify John

input password
Description
Displays a dialog box, which requests a string, which is represented by asterisks (***).

69

Syntax
input-password [groupboxtext] [titlebar]

groupboxtext Specifies the text that appears above the group box.
titlebar Specifies the text that appears in the dialog box’s title bar.

Return
N/A

Example
input-password “Please type your password” Password

iscommand
Description
Verifies if the command is a valid PSL command.

Syntax
iscommand command

Return
Returns 1 if the command is a valid PSL command, otherwise returns 0.

Example
iscommand cd

70

J

join
Description
Creates a string by joining together list elements.

Syntax
join list [joinString]

list Specifies the name of the string will be created
joinString Specifies character that will be separating each element in the list.

Notes
The list argument must be a valid PSL list. This command returns the string formed by joining all
of the elements of list together with joinString separating each adjacent pair of elements. The
joinString argument defaults to a space character.

Returns
Returns the list items separated by joinString.

Example
Displays "1#2#3#4#5#6#7":
message [join {Jerry’s_list} #]

71

K

key

Description
Maps a key to do a certain action.

Syntax
key [alt+][ctrl+][shift+] pckey option [args...]

Notes
A PC key or a terminal key may be a combination of control keys plus another key.
Performs one of several key operations, depending on option. The legal options are:

key [alt+][ctrl+][shift+] pckey
run scriptName

Maps a PC key to run a PSL script.

key [alt+][ctrl+][shift+] pckey
do commands

Maps a PC key to execute PSL commands.

key [alt+][ctrl+][shift+] pckey
send [alt+][ctrl+][shift+] vtkey

Maps a PC key to send a VT key.

The VT key above is a Virtual Terminal key, not DIGITAL's VT emulator key.
The available PC keys are:

A–Z, 0–9 •
•
•
•
•
•
•
•
•

•
•

Special symbol keys: (` - = \ [] ; ' , . /)
Space, Tab, Capslock, Esc, Backspace, Return
Right, Left, Up, Down arrows
Insert, Delete, Home, End, Pgup, Pgdn
F1–F12
Print, Scroll, Pause
Numlock, divide, multiply, subtract, add, decimal, enter
Numpad0–numpad9

The available VT keys are:

A–Z, 0–9
Special symbol keys: (` - = \ [] ; ' , . /)

72

•
•
•
•
•
•
•
•

Space, Tab, Capslock, Esc, Backspace, Return
Right, Left, Up, Down arrows
Insert, Delete, Home, End, Pgup, Pgdn
F1–F12
Print, Scroll, Pause
Numlock, divide, multiply, subtract, add, decimal, enter
Numpad0–numpad9
All the special VT keys (i.e. Hold, Setup, Print, Dial ...)"

Note
Due to support for several terminals, not all keys support all terminal keyboards, yet it is quite
easy to find the name of a requested key in any terminal keyboard.

Returns
Returns an empty string.

Examples
The following line maps ctrl+alt+f5 to activate Notepad.exe:
key ctrl+alt+f5 do {exec notepad.exe}

The following line maps Shift+Alt+A to run script Menu.psl:
key shift+alt+a run menu.psl

The following line maps the Scroll Lock key to send “do”:
key scroll send do

The following line maps Alt+F6 to send Ctrl+g:
key alt+f6 send ctrl+g

73

L

lappend
Description
Appends list elements onto a variable.

Syntax
lappend varName value [value value ...]

varName Specifies the name of the variable, which will have the arguments appended to it.

Notes
This command treats the variable given by varName as a list and appends each of the value
arguments to that list as a separate element, with spaces between elements.
If varName does not exist, it is created as a list with elements given by the value arguments.
lappend is similar to append except that the values are appended as list elements rather than raw
text. This command provides a relatively efficient way to build up large lists. For example,
"lappend a $b" is much more efficient than "a = [concat $a [list $b]]" when $a is long.

Returns
Returns the concatenated list.

Example
Displays "a b {1 2 3} d {1 2 3} 4 5":
a = {a b {1 2 3} d}
message [lappend a {1 2 3} 4 5]

lindex

Description
Retrieves an element from a list.

Syntax
lindex list index

list Specifies the array that will be treated as a PSL list.

74

index Specifies the number of the list element to be retrieved.

Notes
This command treats list as a PSL list and returns the lindex'th element from it (0 refers to the
first element of the list). In extracting the element, lindex observes the same rules concerning
braces and quotes and backslashes as the PSL command interpreter; however, variable
substitution and command substitution do not occur.

Returns
Returns the specified item. If lindex is negative or greater than or equal to the number of
elements in value, then an empty string is returned.

Example
Displays the second item from a list in variable List:
message [lindex $List 2]

linsert
Description
Inserts elements into a list.

Syntax
linsert list index element [element element ...]

list Specifies the array that will be treated as a PSL list.
index Specifies the number of the list element to be retrieved.
element Specifies the string that will be inserted into the list.

Notes
This command produces a new list from list by inserting all of the element arguments just before
the index element of list. Each element argument will become a separate element of the new list.
If index is less than or equal to zero, then the new elements are inserted at the beginning of the
list. If index is greater than or equal to the number of elements in the list, then the new elements
are appended to the list.

Returns
Returns the new list with old and new items.

Example
Inserts items "vax {hp digital ibm} dg" after item 3 in List:
message [linsert $List 3 vax {hp digital ibm} dg]

75

list
Description
Creates a list.

Syntax
list arg [arg arg ...]

arg Specifies the elements that will comprise the list.

Notes
This command returns a list comprised of all the args. Braces and backslashes are added as
necessary, so that the index command may be used on the result to re-extract the original
arguments, and also so that eval may be used to execute the resulting list, with arg comprising the
command's name and the other args comprising its arguments. list produces slightly different
results than concat. concat removes one level of grouping before forming the list, while list
works directly from the original arguments.

Returns
Returns the new list.

Examples
Returns "a b {c d e} {f {g h}}":
list a b {c d e} {f {g h}}

Returns "a b c d e f {g h}":
concat a b {c d e} {f {g h}}

llength
Description
Counts the number of elements in a list.

Syntax
llength list

list Specifies the array that will be treated as a PSL list.

Returns
Returns a decimal string giving the number of elements in the list.

Example
Returns 4:

76

llength {1 2 {ab cd fff} {18 19}}

lock columns

Description
Ignores any host command that attempts to modify the number of columns in the display area
window.
Syntax
lock-columns number of columns

number of columns Specifies the number of columns in the display area window, which you desire to

lock.

Returns
N/A
Example
Locks 5 columns in the display area window:
lock-columns 5

lrange
Description
Returns one or more adjacent elements from a list.

Syntax
lrange list first last

list Specifies the array that will be treated as a PSL list.
first Specifies the first element in the array.
last Specifies the last element in the array.

Notes
list must be a valid PSL list. This command will return a new list consisting of elements first
through last, inclusive. last may be end (or any abbreviation of it) to refer to the last element of
the list. If first is less than zero, it is treated as if it were zero. If last is greater than or equal to the
number of elements in the list, then it is treated as if it were end. If first is greater than last, then
an empty string is returned.
lrange list fiirst first does not always produce the same result as lindex list first (although it often
does for simple fields that are not enclosed in braces). It does, however, produce exactly the same
results as list [lindex list first].

Returns

77

Returns the items in the range.

Example
Returns "3 {3 4 5} a { b c}":
lrange "1 2 3 {3 4 5} a { b c} d" 2 5

lreplace
Description
Replaces elements in a list with new elements.

Syntax
lreplace list first last [element element ...]

list Specifies the array that will be treated as a PSL list.
first Specifies the first element in array.
last Specifies the last element in array.
element Specifies the replacement of an element in the array.

Notes
lreplace returns a new list formed by replacing one or more elements of list with the element
arguments. first gives the index in list of the first element to be replaced.
If first is less than zero, then it refers to the first element of list — the element indicated by first
must exist in the list. last gives the index in list of the last element to be replaced. It must be
greater than or equal to first. last may be end (or any abbreviation of it) to indicate that all
elements between first and the end of the list should be replaced.
The element arguments specify zero or more new arguments to be added to the list in place of
those that were deleted. Each element argument will become a separate element of the list. If no
element arguments are specified, then the elements between first and last are simply deleted.

Returns
Returns the new list.

Example
Returns "1 2 one two d":
lreplace "1 2 3 {3 4 5} a { b c} d" 2 5 one two

lsearch
Description
Checks to see if a list contains a particular element.

Syntax

78

lsearch [mode] list pattern

mode Specifies the method in which the search is carried out.
list Specifies the array that will be treated as a PSL list.
pattern Specifies an order of the elements in the array to search for.

Notes
This command searches the elements of list to see if one of them matches pattern.
If so, the command returns the index of the first matching element.
If not, the command returns (-1).
The mode argument indicates how the elements of list are to be matched against pattern and it
must have one of the following values:

-exact The list element must contain exactly the same string as

pattern.

-glob pIattern is a glob-style pattern, which is matched against each
list element using the same rules as the string match command.
This is default.

-regexp pattern is treated as a regular expression and matched against
each list element using the same rules as the regexp command.

Returns
Returns the index of the first matched item or -1.

Example
Will find the item "unix" and return 1:
lsearch "vax unix ibm" *n*

lsort
Description
Sorts the elements of a list.

Syntax
lsort [switches] list

switches Specifies the particular sort method used.
list Specifies the array that will be treated as a PSL list.

Notes
This command sorts the elements of list, returning a new list in sorted order. By default, ASCII
sorting is used, with the result returned in increasing order. However, any of the following
switches may be specified before list to control the sorting process (unique abbreviations are
accepted):

79

-ascii Uses string comparison with ASCII collation order. This is the

default.

-integer Converts list elements to integers and uses integer comparison.

-real Converts list elements to floating-point values and uses floating
comparison.

-command command Uses command as a comparison command. To compare two
elements, evaluate a PSL script consisting of command with the
two elements appended as additional arguments. The script
should return an integer less than, equal to, or greater than zero
if the first element is to be considered less than, equal to, or
greater than the second, respectively.

-increasing Sorts the list in increasing order ("smallest" items first). This is
the default.

-decreasing Sorts the list in decreasing order ("largest" items first).

Returns
Returns the sorted list.

Example
Returns "ibm unix vax":
lsort "vax unix ibm"

80

M

md
Description
Creates a working folder.

Syntax
md dirName

dirName Specifies the name of the folder being created.

Notes
In the event that a path is not specified then the folder will be created under the PowerTerm
directory.

Returns
Returns an empty string.

menu
Description
Changes menu type.

Syntax
menu option

option Specifies the action to be done to the menu.

Notes
Changes PowerTerm main menu type:

menu hide Removes the main menu.

menu minimize Minimizes the main menu (with one click on the menu, you can

81

restore it).

menu restore Restores the menu to its normal state.

Example
Hides the menu:
menu hide

message

Description
Displays a message.

Syntax
message text [option]

text Specifies the text that appears in the message box’s title bar.
option Specifies what kind of message box will be displayed.

Notes
Displays the message string on the screen. The options are:

ask A Question mark message box with Yes/No buttons is

displayed.
•

•

•

•

•

•

•

•

1 indicates that the Yes button was pressed.
0 indicates that the No button was pressed.
a=”Do you want to close your session?”
message $a ask

error An Error message box is displayed.

If the command succeeds, the return value is True
otherwise it is False.
a=”The file opened cannot be opened”
message $a error

info An Information message box is displayed.

If the command succeeds, the return value is True
otherwise it is False.
a=”The host is being shutdown for maintenance”
message $a info

information An Information message box is displayed.

If the command succeeds, the return value is True
otherwise it is False.
a=”The host is being shutdown for maintenance!”
message $a information

82

okcancel A Question mark message box with OK/Cancel

buttons is displayed.
•

•

•

•

•

•

•

•

•

•

1 indicates that the OK button was pressed.
0 indicates that the Cancel button was pressed.
a=”Do you want to close your session?”
message $a okcancel

question A Question mark message box with OK/Cancel is

displayed.
1 indicates that he OK button was pressed.
0 indicated that the Cancel button was pressed.
a=”Do you want to close your session?”
message $a question

warn A Message box with warning sign is displayed.

If the command succeeds, the return value is True
otherwise it is False.
a=”Please logoff now!”
message $a warn

warning A Message box with warning sign is displayed.

If the command succeeds, the return value is True
otherwise it is False.
a=”Please logoff now!”
message $a warning

yesno A Question mark message box with Yes/No is

displayed.
1 indicates that the Yes button was pressed
0 indicates that the No button was pressed.
a=”Do you want to close your session?”
message $a yesno

Example
Displays the message "Hello" with title "Welcome" and message type info:
message Hello title Welcome info

move file
Description
Moves a file from its present location to a designated location.

Syntax
move-file old-location new-location

83

old-location Specifies the former location of a designated file.
new-location Specifies the new location of a designated file.

Note
If the same name of the file being moved exists in the new-location, it will be overwritten.

Return
N/A

Example
Moves the file current_data.txt from its present location on the C drive to the same folder on the
D drive:
move-file //C: Program Files/Ericom/WebConnect/ current_data.txt
//D: Program Files/Ericom/WebConnect/ current_data.txt

84

O

open
Description
Opens a file.

Syntax
open fileName [access] [permissions]

fileName Specifies the name of the file to be opened.
access Specifies what can be done to the designated file.
permissions Specifies with which permissions the file will be opened.

Notes
This command opens a file and returns an identifier that may be used in future invocations of
commands like read, gets, puts, and close.
The access argument indicates the way in which the file is to be accessed. It may take two forms:

•
•

string, or
a list of POSIX access flags.

In the string form, access may have any of the following values:

r Opens the file for reading only. The file must already exist.

This is default value.

r+ Opens the file for both reading and writing. The file must
already exist.

w Opens the file for writing only. Truncates the file if it exists. If
it does not exist, it creates a new file.

w+ Opens the file for reading and writing. Truncates the file if it
exists. If it does not exist, it creates a new file.

a Opens the file for writing only. The file must already exist. The
file is positioned so that new data is appended to the file.

a+ Opens the file for reading and writing. If the file does not exist,

85

it creates a new empty file. It sets the initial access position to
the end of the file.

In the second form, access consists of a list of any of the following flags, all of which have the
standard POSIX meanings. This parameter is only relevant if you select w.

RDONLY Opens the file for reading only.

RDWR Opens the file for both reading and writing.

Returns
Returns the file ID.

Example
Opens file "output.dat" for writing, writes data and closes:
File = [open output.dat w]

pets $File "message test"

close $File

open keyboard file
Description
Opens keyboard file.

Syntax
open-keyboard-file file-name

fileName Specifies the name of the keyboard file to be opened.

Notes
Supports logical directories. If the filename has no path, is supposed to refer to
<connections>\filename.

Returns
Returns an empty string.

Example
Opens keyboard file keyboard.kbd:

open-keyboard-file keyboard.kbd.

86

open power pad file
Description
Opens Power Pad file.

Syntax
open-power-pad-file file-name

fileName Specifies the name of the Power Pad file to be opened.

Notes
Supports logical directoriesLogical_directories. If the filename has no path, is supposed to refer
to <connections>\filename.

Returns
Returns an empty string.

Example
Opens keyboard file mypad.pad:
open-power-pad-file mypad.pad.

open setup file
Description
Opens setup file.

Syntax
open-setup-file file-name

file-name Specifies the name of the setup file to be opened.

Notes
Supports logical directoriesLogical_directories. If the filename has no path, is supposed to refer
to <connections>\filename.

Returns
Returns an empty string.

Example
Opens setup file "prog.pts":
open-setup-file prog.pts

87

P

pad
Description
Defines the keys on the PowerPad to run any PSL command.

Syntax
pad row col description {}

row Specifies in which row of the Power Pad to assign the designated description.
col Specifies in which column of the Power Pad to assign the designated description.
description Specifies the text that appears on the designated Power Pad button.

Return
N/A

Example
pad 1 2 F2 {message "Hello"}

paste

Description
Pastes the specified text to the designated screen location.

Syntax
 paste col row text

col Specifies in which column on the screen to paste the text.
row Specifies in which row on the screen to paste the text.
text Specifies the string, which will be pasted to the designated screen location.

Notes
The screen location (column and row), which you designate for the text to appear, must be an
unprotected field space. If the specified text is more than one word long then it must be enclosed
in quotation marks.

88

N

OTE Only applicable in an IBM–block mode application.

Returns
N/A
Example
paste 10 55 “Good Morning”

paste from clipboard
Description
Deposits current clipboard contents into emulation window where the cursor is positioned.

Syntax
paste-from-clipboard

Returns
N/A

print file
Description
Prints the specified files to the operating system’s default printer.

Syntax
print-file filename A filename B…

filename Specifies the name of the file to be printed.

Notes
Multiple files can be designated for the printer by listing them and leaving a space in between
each file name.

Returns
N/A

Example
print-file lastyears_budget.txt currentyears_budget.txt

89

print screen
Description
Prints the contents of the work area or the selected text.

Syntax
print-screen

Notes
Simulates the functionality of the Print Screen toolbar button.

Returns
1 if successful and 0 if not.

proc
Description
Creates a PSL procedure.

Syntax
proc name args body

name Specifies the name of a new PSL procedure.
args Specifies the formal parameters to the procedure.
body Specifies the procedures main section of commands.

Notes
The proc command creates a new PSL procedure named name, replacing any existing command
or procedure there may have been by that name. Whenever the new command is invoked, the
contents of body will be executed by the PSL interpreter. args specifies the formal arguments to
the procedure. It consists of a list, possibly empty, each of those elements specifies one argument.
Each argument specifier is also a list with either one or two fields. If there is only a single field in
the specifier, then it is the name of the argument; if there are two fields, then the first is the
argument name and the second is its default value.
When name is invoked, a local variable will be created for each of the formal arguments to the
procedure. Its value will be the value of corresponding argument in the invoking command or the
argument's default value.
Arguments with default values need not be specified in a procedure invocation. However, there
must be enough actual arguments for all the formal arguments that do not have defaults, and there
must not be any extra actual arguments. There is one special case to permit procedures with
variable numbers of arguments: If the last formal argument has the name args, then a call to the
procedure may contain more actual arguments than the procedure has formals. In this case, all of
the actual arguments starting at the one that would be assigned to args are combined into a list (as
if the list command had been used). This combined value is assigned to the local variable args.

90

When body is being executed, variable names normally refer to local variables, which are created
automatically when referenced and deleted when the procedure returns. One local variable is
automatically created for each of the procedure's arguments.
Global variables can only be accessed by invoking the global command or the upvar command.
When a procedure is invoked, the procedure's return value is the value specified in a return
command. If the procedure does not execute an explicit return, then its return value is the value of
the last command executed in the procedure's body. If an error occurs while executing the
procedure body, then the procedure-as-a-whole will return that same error.

Returns
Returns an empty string.

Example
Defines a recursive factorial procedure:
proc factorial x {

if {$x == 1} {return 1}

 return [expr {$x * [factorial [expr $x - 1]]}]

}

Will display 24:
message [facorial 4]

puts
Description
Writes to a file.

Syntax
puts [-nonewline] fileId string

nonewline Specifies whether to suppress a new line character.
fileId Specifies a file that was opened for writing.
string Specifies the procedures main section of commands.

Notes
Writes the characters given by string to the file given by fileId. fileid must have been the return
value from a previous call to open.
puts normally outputs a newline character after string, but this feature may be suppressed by
specifying the -nonewline switch. Output to files is buffered internally by PSL. The flush
command may be used to force buffered characters to be output.

Returns
Returns an empty string.

Example
Opens file data for writing, writes data, and closes:
outFile = [open data w]

91

puts $outFile Information

close $outFile

pwd
Description
Returns the current working directory.

Syntax
pwd

Returns
Returns the path name of the current working directory.

Example
Displays the current working directory:
message [pwd]

92

R

read
Description
Reads from a file.

Syntax
read [-nonewline] fileId
or
read fileId numBytes

nonewline Specifies whether to suppress a new line character.
fileId Specifies a file that was opened for writing.
numBytes Specifies how many bytes to read.

Notes
In the first form, all of the remaining bytes are read from the file given by fileId. They are
returned as the result of the command. If the -nonewline switch is specified, then the last
character of the file is discarded if it is a newline.

•

• In the second form, the extra argument specifies how many bytes to read. Exactly this many
bytes will be read and returned, unless there are fewer than numBytes bytes left in the file. In
this case, all the remaining bytes are returned. fileid must be the return value from a previous
call to open and it must refer to a file that was opened for reading.

Returns
Returns the data read from the file.

Example
Opens file data for reading, reads 10 bytes, and closes:
inFile = [open data]

data = [read $inFile 20]

close $inFile

93

recv ascii file

Description
Receives an ASCII file from the host.

Syntax
recv-ascii-file filename method displaycharacteristic

filename Specifies the file being transferred.
method Specifies what to do with the received file.
displaycharacteristic Specifies whether to display the transferred data.

Notes
The method argument can receive the value append, while displaycharacteristic display-data.
Available communication protocol types:
•
•
•
•

•
•
•
•

kermit
xmodem
ymodem
zmodem

Returns
An empty string.

Example
recv-ascii-file login.psl append display-data

recv binary file

Description
Receives a binary file to the host.

Syntax
recv-binary-file commprotocol filename

commprotocol Specifies the communication protocol being implemented in this file transfer.
filename Specifies the file being transferred.

Notes
Available communication protocol types:

kermit
xmodem
ymodem
zmodem

94

Returns
Returns an empty string.

Example
recv-binary-file kermit login.psl

recv binary stop

Description
Stops PowerTerm from receiving the ASCII file.

Syntax
recv-binary-stop commprotocol filename

commprotocol Specifies the communication protocol being implemented in this file

transfer.
filename Specifies the file being transferred.

Notes
Available communication protocol types:
•
•
•
•

kermit
xmodem
ymodem
zmodem

Returns
Returns an empty string.

Example
recv-binary-stop kermit logoff.psl

recv file

Description
Receives a file from the host.

Syntax
recv-file commprotocol filename

commprotocol Specifies the communication protocol being implemented in this file transfer.
filename Specifies the file being transferred.

Notes

95

When you execute this command, PowerTerm opens a submenu that lists the transmission
options. Each option sends files using the protocol that the option represents. All file transmission
options lead to the same dialog box, in which you select the file to be sent.

Permissible communication protocol types:
•
•
•
•

•
•
•

kermit
xmodem
ymodem
zmodem

Returns
Returns an empty string.

Example
recv-file kermit runbudget.psl

recv indfile
Description
Receives an ind$file file from the host to the PC.

Syntax
recv-indfile

Notes
Only for 3270 emulations.

This command can be executed successfully only if the relative parameters are previously
designated in either:

The ptdef.pts file, under the [3270 IND$FILE] heading.
The Ind$File: Receive File dialog box (accessed by Communication | Receive File).
The indfile command.

When you select this command, PowerTerm opens a dialog box with tabs that correspond to the
transmission options. Each option receives files using the protocol that the option represents.

Returns
N/A

regexp
Description

96

Matches a regular expression against a string.

Syntax
regexp [switches] exp string [matchVar] [subMatchVar subMatchVar ...]

switches Specifies the command mode.
exp Specifies the expression that is compared to a string.
string Specifies the string to be compared to a designated expression.
matchVar Set to the range of string that matches all of exp.
subMatchVar Contains the characters in string that matches the leftmost parenthesized

subexpression within exp.

Notes
Determines whether the regular expression exp matches part or all of string.
If additional arguments are specified after string, then they are treated as the names of variables
in which to return information about which part(s) of string matched exp.
matchVar will be set to the range of string that matched all of exp. The first sub matchVar will
contain the characters in string that matched the leftmost parenthesized subexpression within exp.
The next submatchVar will contain the characters that matched the next parenthesized
subexpression to the right in exp, and so on.
If the initial arguments to regexp start with "-", then they are treated as switches. The following
switches are supported:

-nocase Causes uppercase characters in string to be treated as lower

case during the matching process.

-indices Changes what is stored in the submatchVar’s. Instead of storing
the matching characters from string, each variable will contain
a list of two decimal strings giving the indices in string of the
first and last characters in the matching range of characters.

-- Marks the end of switches. The argument following this one
will be treated as exp even if it starts with a "-".

If there are more subMatchVar's than parenthesized subexpressions within exp, or if a particular
subexpression in exp does not match the string (for example, because it was in a portion of the
expression that was not matched), then the corresponding subMatchVar will be set to "-1 -1" if -
indices has been specified or to an empty string otherwise.

Regular Expressions
•

•

•

•

A regular expression is zero or more branches, separated by "|". It matches anything that
matches one of the branches.
A branch is zero or more pieces, concatenated. It matches a match for the first, followed by a
match for the second, and so on.
A piece is an atom possibly followed by "*", "+", or "?".
If it is followed by "*" then it matches a sequence of zero or more matches of the atom.
If it is followed by "+" then it matches a sequence of 1 or more matches of the atom.
If it is followed by "?" then it matches a match of the atom, or the null string.
An atom can be:
A regular expression in parentheses, matching a match for the regular expression.
A range (see below).

97

A dot (.), matching any single character.
A caret (^), matching the null string at the beginning of the input string.
A dollar sign ($), matching the null string at the end of the input string.
A backslash (\) followed by a single character, matching that character, or a single character
with no other significance, matching that character.

• A range is a sequence of characters enclosed in brackets []. It normally matches any single
character from the sequence.
If the sequence begins with "^", it matches any single character not from the rest of the
sequence.
If two characters in the sequence are separated by "-", this is shorthand for the full list of
ASCII characters between them. For example, "[0–9]" matches any decimal digit.
To include a literal "]" in the sequence, make it the first character, following a possible "^".
To include a literal "-", make it the first or last character.

Choosing Among Alternative Matches
In general there may be more than one way to match a regular expression to an input string. For
example, consider the following command:
regexp (a*)b* aabaaabb x y

Considering only the rules given so far, x and y could end up with the values aabb and aa, aaab
and aaa, ab and a, or any of several other combinations. To resolve this potential ambiguity,
regexp chooses among alternatives using the rule "first then longest". In other words, it considers
the possible matches in order, working from left to right across the input string and the pattern,
and it attempts to match longer pieces of the input string before shorter ones. More specifically,
the following rules apply in decreasing order of priority:

Rule 1 If a regular expression could match two different parts of an

input string, then it will match the one that begins earliest.

Rule 2 If a regular expression contains "|" operators, then the leftmost
matching subexpression is chosen.

Rule 3 In "*", "+", and "?" constructs, longer matches are chosen in
preference to shorter ones.

Rule 4 In sequences of expression components, the components are
considered from left to right.

In the example from above, (a*)b* matches aab. The (a*) portion of the pattern is matched first
and it consumes the leading aa, then the b* portion of the pattern consumes the next b.

Returns
Returns 1 if it matches, 0 if it does not.

Example
After this command, x will be abc, y will be ab, and z will be an empty string.
Rule 4 specifies that (ab|a) gets first shot at the input string, and Rule 2 specifies that the ab
subexpression is checked before the a subexpression. Thus the b has already been claimed before
the (b*) component is checked, and (b*) must match an empty string.
regexp (ab|a)(b*)c abc x y z

98

regsub
Description
Performs substitutions based on regular expression pattern matching.

Syntax
regsub [switches] exp string subSpec varName

switches Specifies the command mode.
exp Specifies the expression that is compared to a string.
string Specifies the string to be compared to a designated expression.
subSpec Specifies special execution of the command.
varName Specifies the name of the variable, which has string copied to it.

Notes
This command matches the regular expression exp against string, and it copies string to the
variable whose name is given by varName. If there is a match, then while copying string to
varName, the portion of string that matched exp is replaced with subSpec. If subSpec contains a
"&" or "0", then it is replaced in the substitution with the portion of string that matched exp.
If subSpec contains an "n", where n is a digit between 1 and 9, then it is replaced in the
substitution with the portion of string that matched the n-th parenthesized subexpression of exp.
Additional backslashes may be used in subSpec to prevent special execution of "&" or "0" or "n"
or backslash.

N

OTE The use of backslashes in subSpec tends to interact badly with the PSL
parser's use of backslashes, so it is generally safest to enclose subSpec in
braces if it includes backslashes.

If the initial arguments to regexp start with "-", then they are treated as switches. The following
switches are supported:

-all All ranges in string that match exp are found and substitution is

performed for each of these ranges. Without this switch, only
the first matching range is found and substituted. If -all is
specified, then "&" and "n" sequences are handled for each
substitution, using the information from the corresponding
match.

-nocase Uppercase characters in string will be converted to lowercase
before matching against exp. However, substitutions specified
by subSpec use the original unconverted form of string.

-- Marks the end of switches. The argument following this one
will be treated as exp even if it starts with a "-".

Returns
Returns 1 if it matches, 0 if it does not.

Example

99

Returns 1 and variable new will contain "*abc*abc*def". The abc portion of abcdef was
substituted by *abc*abc* and the def portion was left at the end:
regsub (ab|a)(b*)c abcdef *&*&* new

remove menu item
Description
Removes the specified menu item.

Syntax
remove-menu-item menu-item

Notes
Once a menu item is removed, it cannot be restored.
For a complete list of menu items, see Menu Items.

Returns
N/A

rename
Description
Renames or deletes a command.

Syntax
rename oldName newName

oldName Specifies the old name of a file.
newName Specifies the new name of a file.

Notes
Renames the command that used to be called oldName so that it is now called newName. If
newName is an empty string, then oldName is deleted.

Returns
Returns an empty string as result.

Example
Renames the for command to loop and then uses it:
rename for loop

loop {i = 0} {$i < 10} {incr i} {commands...}

100

rename-file

Description
Renames a file.

Syntax
rename-file old-filename new-filename

old-filename Specifies the old name of a file.
newName Specifies the new name of a file.

Note
If the new-filename exists, it will be overwritten.

Return
N/A

Example
Renames the file named “2000_budget.txt” to “Current_budget.txt”:
rename-file 2000_budget.txt Current_budget.txt

return
Description
Returns from a procedure.

Syntax
return [-code code] [-errorcode code]

-code Specifies that procedures that implement new control structures can reflect

exceptional conditions back to their callers.
errorcode Specifies the new name of a file.
code Contains a value for the errorcode variable.

Notes
Returns immediately from the current procedure, top-level command, or run command, with
string as the return value. If string is not specified, then an empty string will be returned as result.

Exceptional Returns
In the usual case where the -code option is not specified, the procedure will return normally.
However, the -code option may be used to generate an exceptional return from the procedure.
code may have any of the following values:

ok Normal return. The same as if the option is

omitted.

error Error return. The same as if the error command

101

were used to terminate the procedure, except for
handling of errorInfo and errorCode variables.

return The current procedure will return with a
completion code of PSL_RETURN, so that the
procedure that invoked it will also return.

break The current procedure will return with a
completion code of PSL_BREAK, which will
terminate the innermost nested loop in the code
that invoked the current procedure.

continue The current procedure will return with a
completion code of PSL_CONTINUE, which will
terminate the current iteration of the innermost
nested loop in the code that invoked the current
procedure.

value Value must be an integer. It will be returned as the
completion code for the current procedure.

The -code option is rarely used. It is provided so that procedures that implement new control
structures can reflect exceptional conditions back to their callers.

An additional option, -errorcode, may be used to provide additional information during error
returns. This option is ignored unless code is error.
If the -errorcode option is specified, then code provides a value for the errorcode variable. If the
option is not specified then errorcode will default to NONE.

Returns
Returns the string specified or an empty string.

Example
Defines a division procedure with two parameters. If the second parameter is zero, it returns with
continue error code. Otherwise, it returns with division of the two.
In the rest of the code, in a loop: inputs two numbers and activates the divide procedure. If the
second parameter is zero, divide will act as a continue command and return to start of the while
loop. Otherwise, the division result will be displayed and the loop will be terminated:
proc divide {x y} {

if {$y == 0} {return -code continue 0} else {

return [expr $x / $y]}

}

while {1} {

commands to input data for variables x & y ...

 result = [divide $x $y]

 message "$x / $y = $result"

 break

}

102

ring bell
Description
Rings a bell.

Syntax
ring-bell

Return
N/A

run
Description
Evaluates a file as a PSL script.

Syntax
run fileName [parameters...]

fileName Specifies the name of the file to be evaluated as a PSL script.
parameters Specifies the various parameters that will be used in this script.

Notes
Reads file fileName and pass the contents to the PSL interpreter as a script to evaluate in the
normal fashion. The return value from run is the return value of the last command executed from
the file. If an error occurs in evaluating the contents of the file, then the run command will return
that error. If a return command is invoked from within the file, then the remainder of the file will
be skipped and the run command will return normally with the result from the return command.
If parameters are included, variables named $p1 to $pN will exist, according to number of
parameters.

Supports logical directories . If the filename has no path, it is supposed to refer to
<connections>\filename.

Returns
Returns the value from the last command in the script.

Example
run test.psl

103

S

save keyboard file
Description
Saves the keyboard mapping file (.kbd).

Syntax
save-keyboard-file

Returns
N/A

save power pad file
Description
Saves the power-pad file (.pad).

Syntax
save-power-pad-file

Returns
N/A

save setup file
Description
Saves the terminal settings file (.pts).

Syntax
save-setup-file

Returns

104

N/A

scan
Description
Parses a string using conversion specifiers in the style of sscanf.

Syntax
scan string format varName [varName ...]

string Specifies the name of the input string to be parsed.
format Specifies how to parse the string.
varName Specifies the name of a variable to which a string is assigned.

Notes
This command parses fields from an input string in the same fashion as the ANSI C sscanf
procedure and returns a count of the number of fields successfully parsed.
string gives the input to be parsed and format indicates how to parse it, using % conversion
specifiers as in sscanf. Each varName gives the name of a variable. When a field is scanned from
string, the result is converted back into a string and assigned to the corresponding variable.

Details on Scanning
scan operates by scanning string and formatString together. If the next character in formatString
is a blank or tab, then it is ignored. Otherwise, if it is not a % character, then it must match the
next non-white-space character of string. When a % is encountered in formatString, it indicates
the start of a conversion specifier.

A conversion specifier contains three fields after the %, which all are optional except for the
conversion character:

•
•
•

Indicates that the converted value is to be discarded instead of assigned to a variable.
A number, indicating a maximum field width.
A conversion character.

When scan finds a conversion specifier in formatString, it first skips any white-space characters
in string. Then it converts the next input characters according to the conversion specifier and
stores the result in the variable given by the next argument to scan. The following conversion
characters are supported:

d The input field must be a decimal integer. It is read in

and the value is stored in the variable as a decimal
string.

o The input field must be an octal integer. It is read in
and the value is stored in the variable as a decimal
string.

105

x The input field must be a hexadecimal integer. It is
read in and the value is stored in the variable as a
decimal string.

c A single character is read in and its binary value is
stored in the variable as a decimal string. Initial white
space is not skipped in this case, so the input field may
be a white-space character. This conversion is
different from the ANSI standard in that the input
field always consists of a single character and no field
width may be specified.

s The input field consists of all the characters up to the
next white-space character. The characters are copied
to the variable.

e or f or g The input field must be a floating-point number
consisting of an optional sign, a string of decimal
digits possibly containing a decimal point, and an
optional exponent consisting of an e or E followed by
an optional sign and a string of decimal digits. It is
read in and stored in the variable as a floating-point
string.

[chars] The input field consists of any number of characters in
chars. The matching string is stored in the variable. If
the first character between the brackets is a "]", then it
is treated as part of chars rather than the closing
bracket for the set.

[^chars] The input field consists of any number of characters
not in chars.
The matching string is stored in the variable. If the
character immediately following the "^" is a "]", then
it is treated as part of the set rather than the closing
bracket for the set.
The number of characters read from the input for a
conversion is the largest number that makes sense for
that particular conversion. For example, as many
decimal digits as possible for %d, as many octal digits
as possible for %o, and so on.

The input field for a given conversion terminates either when a white-space character is
encountered or when the maximum field width has been reached, whichever comes first. If a "*"
is present in the conversion specifier, then no variable is assigned and the next scan argument is
not consumed.

Returns
Returns the number of scanned parameters and fills the variables with their values.

Example

106

Scans the following string and sets the variables:
var1 = 123 var2 = 65 ("A" ASCII) var3 = unix.

scan "123 A unix" "%d %c %s" var1 var2 var3

screen
Description
Copies data from the screen.

Syntax
screen startRow startCol [endRow] endCol

startRow Specifies the uppermost row of the required text area of the emulation screen.
startCol Specifies the leftmost column of the required text area of the emulation screen.
endRow Specifies the lowermost row of the required text area of the emulation screen.
endCol Specifies the rightmost column of the required text area of the emulation screen.

Notes
screen copies complete lines from the starting position (startRow, startCol) to and including the
end position (endRow, endCol).
If endRow is not specified, endRow equals startRow.

Returns
Returns the data copied from the screen.

Example
Consider the following screen:
Line 1: "line 1: 1234567890"
Line 2: "line 2: 1234567890"
Line 3: "line 3: 1234567890"
Line 4: "line 4: 1234567890"
data = [screen 2 15 4 10]

Sets variable data to screen data from (2, 15) to (4, 10):
"7890\nline 2: 1234567890\nline 3: 12"

where "\n" is a line separator.

screen-rect
Description
Copies data from the screen.

107

Syntax
screen-rect startRow startCol [endRow] endCol

startRow Specifies the uppermost row of the required text area of the emulation screen.
startCol Specifies the leftmost column of the required text area of the emulation screen.
endRow Specifies the lowermost row of the required text area of the emulation screen.
endCol Specifies the rightmost column of the required text area of the emulation screen.

Notes
screen-rect copies rectangular data from the starting position (startRow, startCol) to and
including the end position (endRow, endCol).
If endRow is not specified, endRow equals startRow.

Returns
Returns the data copied from the screen.

Example
Consider the following screen:
line 1: 1234567890
line 2: 1234567890
line 3: 1234567890
line 4: 1234567890
data = [screen-rect 1 2 3 15]

Sets variable data to screen data from (1, 2) to (3, 15):
"ine 1: 1234567

 \n

 ine 2: 1234567

 \n

 ine 3: 1234567

 \n"

where "\n" is a line separator.

seek
Description
Changes the access position for an open file.

Syntax
seek fileId offset [origin]

fileId Specifies the file upon which the current access position is changed.
offset Specifies the initial access position of the seek command.
origin Specifies the point of reference in the file from where the offset is calculated.

108

Notes
fileId must be the return value from a previous call to open.The offset and origin arguments
specify the position at which the next read or write will occur for fileId. offset must be an integer
(can be negative) and origin must be one of the following:

start The new access position will be offset bytes from the start of the

file. This is the default.

current The new access position will be offset bytes from the current
access position. A negative offset moves the access position
backwards in the file.

end The new access position will be offset bytes from the end of the
file. A negative offset places the access position before the end-of-
file, and a positive offset places the access position after the end-
of-file.

Returns
Returns an empty string.

Example
Opens file file1 for reading. Moves to position 55 in the file. Reads 10 bytes to variable data and
closes file:
fileId = [open file1]

seek $fileId 55 start

data = [read $fileId 10]

close $fileId

send
Description
Sends data to the host.

Syntax
send data

data Specifies the information that is sent to the host.

Notes
Sends data as if it is typed on the keyboard. The "^" sign followed by a letter represents the
control code of that letter. For example, ^M sends ctrl-m.

Returns
Returns an empty string.

Example

109

The host receives the following data and shows the current directory:
send "dir^M"

send abort output
Description
Sends escape sequences to the host to stop sending output.

Syntax
send-abort-output

Notes
Only in Telnet emulations.

Returns
Returns an empty string.

send ascii file
Description
Sends a file as ASCII code to the host.

Syntax
send-ascii-file filename

filename Specifies the file that is sent as ASCII code.

Notes
Available communication protocol types:

•
•
•
•

kermit
xmodem
ymodem
zmodem

Returns
An empty string.

Example
send-ascii-file exit.psl

110

send binary file

Description
Sends a binary file to the host.

Syntax
send-binary-file commprotocol filename

commprotocol Specifies the communication protocol being implemented in this file transfer.
filename Specifies the file being transferred.

Notes
Available communication protocol types:

•
•
•
•

kermit
xmodem
ymodem
zmodem

Returns
An empty string.

Example
send-binary-file ymodem register.psl

send break
Description
Sends a break command to the host.

Syntax
send-break

Notes
Simulates a user pressing the break key.

Returns
Returns an empty string.

send file
Description

111

Sends a file from the PC to the host.

Syntax
send-file commprotocol filename

commprotocol Specifies the communication protocol being implemented in this file transfer.
filename Specifies the file being transferred.

Notes
Permissible communication protocol types:

•
•
•
•

•
•
•

kermit
xmodem
ymodem
zmodem

When you execute this command, PowerTerm opens a submenu that lists the transmission
options. Each option sends files using the protocol the option represents. All file transmission
options lead to the same dialog box, in which you select the file to be sent.

Returns
Returns an empty string.

Example
send-file xmodem 1.psl

send indfile
Description
Sends a file from the PC to the host.

Syntax
send-indfile

Notes
Only for 3270 emulations.

This command is executed successfully only if the relative parameters are previously designated
in either:

The ptdef.pts file under the [3270 IND$FILE] heading.
The Ind$File: Receive File dialog box (accessed by Communication | Receive File).
The indfile command.

When you execute this command, PowerTerm opens a submenu that lists the transmission
options. Each option sends files using the protocol the option represents. All file transmission
options lead to the same dialog box, in which you select the file to be sent.

112

Returns
Returns an empty string.

send raw data
Description
Sends raw data to the host.

Syntax
send-raw-data data

data Specifies the data to be sent to the host.

Notes
Sends data exactly as is. No conversion is done.
The "^" sign followed by a letter represents the control code of that letter. ^M sends ctrl-m.

Returns
Returns an empty string.

Example
The host receives the following data and shows the current directory:
send-raw-data "dir^M"

session
Description
Modifies the communication session status.

Syntax
session option

option Specifies the method that the session operation will employ.

Notes
Performs one of several session operations, depending on option. The legal options are:

session open Opens a session according to communication parameters

previously defined with the set command.

session modify Modifies the current session according to communication
parameters previously defined with the set command.

113

session close Closes the current session.

In order to automatically connect to a host, you have to make the appropriate script and add the
name of the script, with parameters, to the Property’s Command line. PowerTerm will run the
script and open the session every time the icon is clicked.

Returns
Returns an empty string.

Examples
Opens a COM session with the following parameters:
set comm-type com

set port-number 2

set baud-rate 19200

set protocol-type xonxoff

session open

Modifies the COM session to 9600 baud-rate:
set baud-rate 9600

session modify

Opens the setup file "abc.pts" for working with specific PowerTerm parameters for the "abc" host
(similar to the Open command on the File menu). Then opens a Telnet session to host "abc"
(similar to the Connect command on the Communication menu).
open-setup-file abc.pts

set comm-type telnet

set host-name abc

session open

Opens a lat session to host "abc" through DIGITAL PATHWORKS 32:
set comm-type lat

set service-name abc

session open

Opens a lat session to host "abc" through Novell's NetWare for LAT:
set comm-type lat

set server-name NovellServerName

set service-name abc

session open

Closes the current session:
session close

114

A script, named telnet.psl, is connected to a host with telnet protocol:
1. Click Properties on the File menu, and enter:

C:\PTW\PTW.EXE telnet.psl HostName

2. Create the following script:
set comm-type telnet
set host-name $p1
session open

Every time you click the icon, telnet.psl will execute and connect to HostName. In this manner
you can create several icons for automatic connection to all your organization’s computers.

set

Description
Sets a new value to a PowerTerm parameter.

Syntax
set parameter value [value2]

Notes
Sets a new value to one of the PowerTerm parameters.

set buttons [on|off] Shows/hides the Soft buttons.

set block-paste on | off

Enables the block-paste mode algorithm.

set end-of-medium cr | crlf |
ff

Only for IBM emulations.
Sets the end-of-medium printing mode.

set func-cols num-of-columns

Sets the number of function buttons columns.

set func-hotspot-rows start
end

Only for IBM emulations.
•

•
•

Sets the range of rows in which function hotspots are
enabled.
If the value for start or end is zero, ignore the parameter.
Negative values can be used in order to back track from the
last line of the screen.

set keyboard [default | lk450]

Sets the keyboard type.

set mark-func-only on | off

Enables function hotspots to mark only the function key’s
name.

set menu-hotspots on | off

Only for IBM emulations.
Activates the menu hotspots.

115

set menu-hotspot-rows start
end

Only for IBM emulations.
•
•
•

Sets the range of rows in which menu hotspots are enabled.
If the value for start or end is zero, ignore the parameter.
Valid values start from row 1.

set mouse-report on | off

Only for VT emulations.
Enables mouse report.

set option-hotspots on | off

Only for IBM emulations.
Activates the option hotspots.

set pad-cols num-of-columns

Sets the number of power-pad columns.

set pad-rows num-of-rows

Sets the number of power-pad rows.

set pad-pos left top

Sets the power-pad position.

set pad-size width height

Sets the power-pad size.

set print-device-name device-
name

Sets the print device name.

set print-direction r2l | l2r

Sets the print direction to right-to-left (r2l) or left-to-right (l2r).

set print-file-name filename

Sets the print filename.

set print-prefix text

Sets the print prefix.

set print-screen-convert
no_convert | ibm | digital |
graphics

Sets the print screen conversion mode.

set print-suffix text

Sets the print suffix.

set printer-transparent-
footer [footer]

Sets the printer transparent footer.

set printer-transparent-
header [header]

Sets the printer transparent header.

set repeat-left-alt-key on | off

Allows repetition of left-alt key.

set repeat-right-alt-key on |
off

Allows repetition of right-alt key.

set repeat-left-ctrl-key on |
off

Allows repetition of left-ctrl key

set repeat-right-ctrl-key on |
off

Allows repetition of right-ctrl key.

116

set show-buttons on | off

Shows/hides the function buttons.

set show-status-bar on | off

Shows/hides the status bar.

set show-toolbar on | off

Shows/hides the toolbar.

set slave-printer-convert
no_convert | ibm | digital |
graphics

Sets the slave printer conversion mode.

set slave-printer-delimiter
decimal-ascii-code

Determines the job delimiter character that will divide the data
into print jobs when printing in slave mode, instead of escape
sequences arriving from the host application.

set status-bar on | off Activates the status bar.

set toolbar on | off Activates the toolbar.

set vt-hotspots on | off Only for VT emulations.
Activates the VT hotspots.

set wyse-esc-b on | off Only for Wyse emulations.
Ignores the escape sequence esc-b.

Returns
N/A

set auto signon

Description
Tells the transport protocol to automatically log you on to the host once a connection is
established.

Syntax
set auto-signon yes | no

yes Instructs the transport protocol to automatically log you on to the host once

a connection is established.
no Does not instruct the transport protocol to automatically log you on to the

host once a connection is established.

Returns
N/A

117

set baud rate

Description
Tells the transport protocol to automatically log you on to the host once a connection is
established.

Syntax
set baud-rate number

number Specifies the value that represents the baud rate to use.

Legitimate values for number are:

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

50
75
110
134
150
300
600
1200
1800
2000
2400
3600
4800
7200
9600
14400
19200
38400
57600
115200

Returns
N/A

set comm-type
Description
Designates which communication protocol to use.

Syntax
set comm-type commtypeName

118

commtypeName Specifies the value that represents the communication protocol to use.

Legitimate values for commtypeName are:

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

com
telnet
bapi
cterm
lat
tapi
superlat
nwlat
tn3270
mssna
nwsaa
nwsaa-ipx
nwsaa-tcpip
tn5250
appc
ns-router
winappc

Returns
N/A
Example
set comm-type com

set device-name

Description
Specifies the device to which to connect.

Syntax
set device-name name

name Specifies the alphanumeric string containing the desired device name.

Notes
Only for AS/400 printing sessions.

Returns
N/A

119

set disable-exit-active-session
Description
Determine whether or not the terminal will exit after the timeout (which was specified in the
terminal setup preferences) has expired.

Syntax
set disable-exit-active-session on | off

on Specifies that the terminal will exit after the timeout has expired
off Specifies that the terminal will not exit after the timeout has expired.

Returns
N/A

set end of medium
Description
Defines what will be sent in the end of each medium.

Syntax
set end-of-medium cr | crlf | ff

cr Specifies a carriage return character escape sequence to be sent at the end of the

medium.
crlf Specifies a carriage return line feed character escape sequences to be sent at the end of

the medium.
ff Stipulates a form feed character escape sequence to be sent at the end of the medium.

Notes
Only for IBM printer emulations.

Returns
N/A

set func cols
Description
Specifies the number of the columns that the user wants to have of function keys.

Syntax
set func-cols number

120

number Specifies the number of columns in the function keys.

Returns
N/A

set func rows
Description
Determines the number of rows for the function buttons.

Syntax
set func-rows number

number Specifies the number of rows of function keys.

Returns
N/A

set keyboard

Description
Sets the keyboard type to work with a special VT emulation type.

Syntax
set keyboard default | lk450

default Specifies the keyboard type to work with the default.
lk450 Specifies the keyboard type to work with lk450.

Notes
Only for VT emulations.

Returns
N/A
Example
set keyboard lk450

121

set lu category
Description
Specifies LU category.
Syntax
set lu-category public | pooled | dedicated

public Specifies public as the default value for all LUs.
pooled Specifies that the SNA session use an LU belonging to a specific LU pool.
dedicated Specifies that the LU is dedicated to a specific user or device, or use in accessing a

particular application for the SNA session.

Notes
Only for 5250 (AS\400) emulations.

All sessions in an LU pool share the same characteristics. When an application program no longer
requires the LU, it is returned to the pool to be used by the same or another application program.
When you select pooled, and an LU pool name is defined, specify the LU pool name in the pool
field. Otherwise, create an LU pool.

Returns
N/A

set lu name

Description
Specifies the LU name.
Syntax
set lu-name value

value Specifies a string containing the desired LU name.

Notes
Only for 5250 (AS\400) emulations.

Returns
N/A

122

set max sessions

Description
Specifies the maximum number of PowerTerm sessions that can be opened simultaneously.

Syntax
set max-sessions number

number Designates the limit number of PowerTerm sessions that can be opened

simultaneously.

Returns
N/A

set menu hotspot rows

Description
Specifies which menu rows will be activated as hotspots.

Syntax
set menu-hotspot-rows start end

start Designates the first row of the menu, which will act as a hotspot.
end Designates the last row of the menu, which will act as a hotspot.

Returns
N/A
Example
Causes PowerTerm to display menu hotspots from rows 4 to 20. Except for these lines all other
menu fields will not operate as hotspots:
set menu-hotspot-rows 4 20

set message library
Description
Specifies which library contains the message queue for exception messages.

Syntax

123

set message-library libraryname

libraryname Specifies the location of the library, which contains the message queue for

exception messages.

Notes
Only for AS\400 printer sessions.

Returns
N/A
Example
set message-library *LIBL

set message queue
Description
Designates to which AS/400 message queue, exception messages should be sent.

Syntax
set message-queue string

string Represents the message queue where exception messages should be sent.

Notes
Only for AS/400 printer emulations.
A likely scenario: the AS/400 may need to tell the printer to switch to another paper tray.

Returns
N/A
Example
set message-queue QSYSOPR

set mouse control
Description
Determines whether or not the mouse clicks will be active.

Syntax
set mouse-control on | off

on Enables mouse clicks.
off Disables mouse clicks.

124

Returns
N/A

set mouse report
Description
Determines whether or not the mouse clicks will be reported to the host and displayed on the
status line or not.
OR
Enables mouse report.
OR
Enables mouse report responses.

Syntax
set mouse-report on | off

on Enables mouse report.
off Mouse report responses are disabled by default.

Notes
Only for VT emulations.

Returns
N/A

set node name
Description
Specifies the host computer name or the host’s IP address through which the data is transferred.
Syntax
set node-name hostname

hostname Specifies a string that designates the node name to be used in a CTERM connection

type.

Notes
Not relevant to any other connection type.
Returns
N/A

125

set pad cols

Description
Determines the number of rows for the Power Pad buttons.

Syntax
set pad-cols number

number Specifies the columns that the user wants to have in the Power Pad.

Returns
N/A

set pad pos

Description
Determines the x and the y coordinates of the Power Pad window’s position.

Syntax
set pad-pos x y

x Specifies the upper left corner of the pad in a horizontal screen coordinate.
y Specifies the upper left corner of the pad in a vertical screen coordinate.

Returns
N/A

set pad rows

Description
Determines the number of rows for the Power Pad buttons.

Syntax
set pad-rows number

number Specifies the number of the rows in Power Pad.

Returns
N/A

126

set pad size
Description
Determines the width and height of the Power Pad window.

Syntax
set pad-size width height

width Designates the width of the Power Pad window.
height Designates the height of the Power Pad window.

Returns
N/A

set parity

Description
Determines the serial communication parity bits and type.

Syntax
set parity [7 | 8] [none | even | odd | mark | space]

7 Designates 7 bits parity as the serial communication type.
8 Designates 8 bits parity as the serial communication type.
none No parity scheme is designated.
even Even scheme is designated.
odd Odd parity scheme is designated.
mark Mark parity scheme is designated.
space Space parity scheme is designated.

Notes
Only for Telnet (VT emulation).

Returns
N/A

set print directions

Description
Designates which direction for the printer to print. (Reverses the direction of the sent terminal
data to the printer.)

127

Syntax
set print-direction r2l | l2r

r2l Stipulates that the printer will print from right to left.
l2r Stipulates that the printer will print from left to right.

Notes
Only for IBM printer emulations, Hebrew version.

Returns
N/A

set print file name

Description
Sets the print filename.

Syntax
set print-file-name filename

filename Stipulates what the name of the file is.

Returns
N/A

set print prefix
Description
Specifies the print prefix.

Syntax
set print-prefix text

text Stipulates what the print prefix is.

Returns
N/A

128

set print screen convert
Description
Sets the slave printer’s conversion mode.
Syntax
set print-screen-convert [no_convert | ibm | digital | graphics]

no_convert Indicates that no conversion of data will take place.
ibm Converts data to IBM character sets.
digital Converts data to Digital character sets.
graphics Prints in Graphics mode.

Returns
N/A

set print suffix
Description
Specifies the print suffix.

Syntax
set print-suffix string

string Stipulates what the print suffix is.

Returns
N/A

set printer header lines

Description
Determines the amount of lines of each printer page, which will be allocated for the header.

Syntax
set printer-header-lines rows

rows Represents the amount of lines of each printer page, which will be allocated for the

header.

Returns
N/A

129

set printer transparent header
Description
Determine what to display in the transparent header of each printing.

Syntax
set printer-transparent-header header

header Stipulates what will display in the transparent header of each printing.

Returns
N/A

set printer transparent trailer

Description
Determine what to display in the transparent trailer of each printing.

Syntax
set printer-transparent-trailer trailer

trailer Stipulates what will display in the transparent trailer of each printing.

Returns
N/A

set protocol type

Description
Determines the flow control parameters.

Syntax
set protocol-type [none | xonxoff | hardware]

none Indicates no flow control at this level or below.
xonxoff Indicates software flow control by recognizing XON and XOFF characters.
hardware Indicates flow control delegated to the lower level, for example a parallel port.

Notes
Valid when working with Telnet (VT emulation), using COM connection.

Returns
N/A

130

set repeat right alt key

Description
Enables right alt key to repeat when constantly pressed.

Syntax
set repeat-right-alt-key on | off

on Enables right alt key to repeat when constantly pressed.
off Disables right alt key to repeat when constantly pressed.

Returns
N/A

set repeat left alt key
Description
Allows left alt key to repeat when constantly pressed.

Syntax
set repeat-left-alt-key on | off

on Enables left alt key to repeat when constantly pressed.
off Disables left alt key to repeat when constantly pressed.

Returns
N/A

set repeat left ctrl key

Description
Allows left ctrl key to repeat when constantly pressed.

Syntax
set repeat-left-ctrl-key on | off

on Enables left ctrl key to repeat when constantly pressed.
off Disables left ctrl key to repeat when constantly pressed.

Returns
N/A

131

set repeat right ctrl key
Description
Allows right-ctrl key to repeat when constantly pressed.

Syntax
set repeat-right-ctrl-key on | off

on Enables right ctrl key to repeat when constantly pressed.
off Disables right ctrl key to repeat when constantly pressed.

Returns
N/A

set security type
Description
Determines the type of security in use.

Syntax
set security-type [unsecured | ssl | ssh]

unsecured Specifies that there is no security implemented in the connection.
ssl Specifies that SSL security is implemented in the connection.
ssh Specifies that SSH security is implemented in the connection.

Notes
Only for products that support SSL and SSH security types.

Returns
N/A

set slave printer convert
Description
Sets the slave printer’s conversion mode.
Syntax
set slave-printer-convert [no_convert | ibm | digital | graphics]

no_convert Indicates that no conversion of data will take place
ibm Converts data to IBM character sets.

132

digital Converts data to Digital character sets.
graphics Prints in Graphics mode.

Returns
N/A

set ssh allow agent
Description
Passes authorization information over the encrypted link.

Syntax
ssh-allow-agent on | off

on Enables authorization information to be transmitted over the encrypted link.
off Disables authorization information to be transmitted over the encrypted link.

Returns
N/A

set ssh attempt tis

Description
Attempts to authenticate with either TIS or CryptoCard.

Syntax
ssh-attempt-tis on | off

on Attempts to authenticate with either TIS or CryptoCard.
off No attempts are made to authenticate with either TIS or CryptoCard.

Returns
N/A

set ssh cipher
Description
Specifies the cipher algorithm to be used to encrypt network traffic between the local machine
and the server.

133

Syntax
set ssh-cipher [3des | blowfish | des | aes]

The following cipher algorithms are available:

•
•
•
•

3des
blowfish
des
aes

Returns
N/A

set ssh enable compression

Description
Specifies to employ compression.

Syntax
ssh-enable-compression on | off

on Enables compression.
off Disables compression.

Returns
N/A

set ssh enable x11

Description
Allows for the X Windows traffic between the X server and X client to be encrypted.

Syntax
set ssh-enable-x11

Returns
N/A

134

set ssh type
Description
Determines which SSH version to implement.

Syntax
set ssh-type [ssh1 | ssh2]

ssh1 Specifies that the SSH1 type is used.
ssh2 Specifies that the SSH2 type is used.

Notes
The security type must be designated (via script commands or menu) prior to specifying the SSH
type.

Returns
N/A

Example
set ssh-type ssh1

set ssh username
Description
Specifies the user name to be used by the SSH protocol for identification by the host.

Syntax
set ssh-username sshname

sshname Represents the user name to be used by the SSH protocol for identification by the

host.

Returns
N/A

set ssl type
Description
Determines which SSL version to implement.

Syntax
set ssl-type [ssl2 | ssl3 | tls1]

135

ssl2 Specifies that the SSL2 type is used.
ssl3 Specifies that the SSL3 type is used.
tls1 Specifies that the TLS1 type is used.

Notes
The security type must be designated (via script commands or menu) prior to specifying the SSL
type.

Returns
N/A

Example
set ssl-type ssl3

set system name

Description
Specifies the name of the system to which to connect to.

Syntax
set system-name name

name Specifies the alphanumeric string which represents the host to which to connect.

Returns
N/A
Example
set system-name 126.0.0.200

set system-name as400.eicom.com

set telnet port
Description
Specifies the TELNET port number.

Syntax
set telnet-port value

value Specifies the number, which represents the desired connection port number.

Notes
Range 1 – 65535. Default port is 23.

136

Returns
N/A

set terminal id
Description
Specifies the terminal id.
Syntax
set terminal-id name

Legal terminal types for name are:
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

vt52
vt100
vt220-7
vt220-8
vt320-7
vt320-8
vt420-7
vt420-8
vt525-7
vt525-8
dg
sco-ansi
at386
aixterm
wyse50
wyse60
3270 display
3270 printer
5250 display
5250 printer
tvi925
tvi950
bbs-ansi
linux
siemens
tandem 6530
hp 700/96

Returns
N/A

137

set use alt key up
Description
Determine the behavior of the alt+numeric keypad combination to enter a character using its
ASCII code.

Syntax
set use-alt-key-up [on | off]

on Does not require pressing 3 digits for all entries. This is default.
off Requires pressing 3 digits for all entries.

Returns
N/A

Example
To enter new-line (ASCII code 12):
set use-alt-key-up on

Press simultaneously alt + 1,2 (from the keypad). Release alt to get the desired result.
set use-alt-key-up off

Press simultaneously alt + 1,2 (from the keypad). Release alt to get the same result.

set use available ssh show info
Description
Tells PowerTerm to show the SSH information.

Syntax
set use-available-ssh-show-info [yes | no]

yes Instructs PowerTerm to show the SSH information.
no Instructs PowerTerm not to show the SSH information.

Returns
N/A

set use tn3270e protocol
Description
Determines whether to implement the TN3270E protocol.

138

Syntax
set use-tn3270e-protocol [yes | no]

yes Instructs PowerTerm to use the TN 3270E protocol.
no Instructs PowerTerm not to use the TN 3270E protocol.

Returns
N/A

split
Description
Splits a string into a proper PSL list.

Syntax
split string [splitChars]

string Specifies the string that splits into a list.
splitChars Specifies the characters that indicate where to split the string.

Notes
Returns a list created by splitting string at each character that is in the splitChars argument. Each
element of the result list will consist of the characters from string that lie between instances of the
characters in splitChars. Empty list elements will be generated if string contains adjacent
characters in splitChars, or if the first or last character of string is in splitChars. If splitChars is
an empty string, then each character of string becomes a separate element of the result list.
SplitChars defaults to the standard white-space characters.

Returns
Returns the split string.

Examples
Returns "comp unix misc":
split "comp.unix.misc" "."

Returns "H e l l o { } w o r l d":
split "Hello world" ""

start auto print
Description
Starts to accumulate incoming data while it is displayed on the screen.

Syntax

139

start-auto-print

Returns
N/A

status message
Description
Displays a message in the status bar.

Syntax
status-message text

text Specifies the text to appear in the status message.

Returns
An empty string.
Example
status-message “The system is temporarily down”

stop auto print
Description
Prints all the data accumulated in the printing buffer of the slave printer or in the Auto print
buffer.

Syntax
stop-auto-print

Notes
If data was buffered with a printing request and communication failed before the data was sent to
the slave printer, execute this command to print the accumulated information.

Returns
N/A

string
Description

140

Manipulates strings.

Syntax
string option arg [arg ...]

option Specifies which string operation to perform.
arg Specifies the parameters to be used in the string operation.

Notes
Performs one of several string operations, depending on option. The legal options (which may be
abbreviated) are:

string compare string1
string2

Performs a character-by-character comparison of strings string1
and string2 in the same way as the C strcmp procedure.
•

•

•

•

•

•

•

Returns -1, 0, or 1, depending on whether string1 is
lexicographically less than, equal to, or greater than string2.

string first string1 string2 Searches string2 for a sequence of characters that exactly match

the characters in string1.
If found, returns the index of the first character in the first
such match within string2.
If not found, returns -1.

string index string charIndex Returns the charIndex'th character of the string argument.

A charIndex of 0 corresponds to the first character of the
string.
If charIndex is less than 0 or greater than or equal to the
length of the string, then an empty string is returned.

string last string1 string2 Searches string2 for a sequence of characters that exactly match

the characters in string1.
If found, returns the index of the first character in the last
such match within string2.
If there is no match, then returns -1.

string length string Returns a decimal string giving the number of characters in

string.

string match pattern string If pattern matches string, returns 1, if it does not, returns 0.
For the two strings to match, their contents must be
identical except that the following special sequences may
appear in pattern:
* Matches any sequence of characters in string,

including a null string.
? Matches any single character in string.
[chars] Matches any character in the set given by chars. If a

sequence of the form x-y appears in chars, then any
character between x and y, inclusive, will match.

\x Matches the single character x. This provides a way
of avoiding the special interpretation of the
characters *?[]\e in pattern.

141

string range string first last Returns a range of consecutive characters from string, starting

with the character whose index is first and ending with the
character whose index is last.
•
•
•

•

•

•

•

An index of 0 refers to the first character of the string.
last may be end to refer to the last character of the string.
If first is less than zero, then it is treated as if it were zero,
and if last is greater than or equal to the length of the string,
then it is treated as if it were end.
If first is greater than last, then an empty string is returned.

string tolower string Returns a value equal to string except that all uppercase letters

have been converted to lower case.

string toupper string Returns a value equal to string except that all lowercase letters
have been converted to upper case.

string trim string [chars] Returns a value equal to string except that any leading or
trailing characters from the set given by chars are removed.

If chars is not specified, then white space is removed
(spaces, tabs, newlines, and carriage returns).

string trimleft string [chars] Returns a value equal to string except that any leading

characters from the set given by chars are removed.
If chars is not specified, then white space is removed
(spaces, tabs, newlines, and carriage returns).

string trimright string [chars] Returns a value equal to string except that any trailing

characters from the set given by chars are removed.
If chars is not specified, then white space is removed
(spaces, tabs, newlines, and carriage returns).

Returns
Returns the converted string.

Example
Returns 9:
string last ab 123abc456ab12

Returns "UNIX":
string toupper Unix

switch
Description

142

Evaluates one of several scripts, depending on a given value.

Syntax
switch [options] string [pattern body [pattern body ...]]
or
switch [options] string {pattern body [pattern body...]}

options Specifies which string matching operation to perform.
string Specifies the string to match to a pattern.
pattern body Evaluates this argument upon making a match.

Notes
The switch command matches its string argument against each of the pattern arguments in order.
As soon as it finds a pattern that matches string, it evaluates the following body argument by
passing it recursively to the PSL interpreter and returns the result of that evaluation.
•
•

•

•

•

If the last pattern argument is default, then it matches anything.
If no pattern argument matches string and no default is given, then the switch command
returns an empty string.
If the initial arguments to switch start with "-", then they are treated as options. The
following options are currently supported:

-exact Uses exact matching when comparing string to pattern. This is

the default.

-glob Uses glob-style matching (i.e. the same as implemented by the
string match command) when matching string to the patterns.

-regexp Uses regular expression matching (i.e. the same as implemented
by the regexp command) when matching string to the patterns.

-- Marks the end of options. The argument following this one will
be treated as string even if it starts with a "-".

Two syntaxes are provided for the pattern and body arguments:

The first uses a separate argument for each of the patterns and commands. This form is
convenient if substitutions are desired on some of the patterns or commands.
The second form places all of the patterns and commands together into a single argument.
The argument must have proper list structure, with the elements of the list being the patterns
and commands.
The second form makes it easy to construct multiline switch commands, because the braces
around the whole list make it unnecessary to include a backslash at the end of each line.

Since the pattern arguments are in braces in the second form, no command or variable
substitutions are performed on them. This makes the behavior of the second form different than
the first form in some cases. If a body is specified as "-'', it means that the body for the next
pattern should also be used as the body for this pattern (if the next pattern also has a body of "-",
then the body after that is used, and so on). This feature makes it possible to share a single body
among several patterns.

Returns

143

Returns the output of the last command executed in body.

Example
Will return "2":
switch abc a-b {format 1} abc {format 2} default {format 3}

Will return "1":
switch -regexp aaab {

 ^a.*b$ -

 b {format 1}

 a* {format 2}

 default {format 3}

}

Will return "3":
switch xyz {

 a -

 b {format 1}

 a* {format 2}

 default {format 3}

}

system request
Description
Assigns the terminal to the system request state.

Syntax
system-request [-[selectionnumber]]

Notes
Only for 3270/5250 emulations.
The system request is mapped, by default, to the ALT + F1 key combination for 5250, and
SHIFT + ESC key combination for 3270.

Returns
N/A
Examples
Opens a dialog where you can manually select the option:
send <system-request>

144

Similar to send <system-request-> followed by manually pressing enter (on AS/400 the system
request menu appears):
send <system-request->

Similar to send <system-request-> followed by pressing 1 and then enter (on AS/400 option 1
from the system request menu is selected):
send <system-request-1>

145

T

tell
Description
Returns current access position for an open file.

Syntax
tell fileId

fileId Specifies the file upon which the current access position is returned.

Notes
Returns a decimal string giving the current access position in fileId.
fileId must have been the return value from a previous call to open.

Returns
Returns the file position.

Example
Opens a file and Reads twice 10 bytes. tell will return "20":
fileId = [open data"]

read $fileId 10

read $fileId 10

position = [tell $fileId]

close $fileId

terminal id
Description
Determines the ID returned by the emulation program to the host.

Syntax
terminal-id

Notes

146

The unprotected field must be followed by another string.

Returns
N/A

time
Description
Measures the execution of a script.

Syntax
time scriptCommand count

scriptCommand Specifies which string operation is being timed.
count Specifies string, which indicates the average amount of time required per iteration.

Notes
Calls the PSL interpreter count times to evaluate scriptCommand. If count is not specified, it will
call it once. It then returns a string of the form "503 microseconds per iteration", which indicates

age amount of time required per iteration, in microseconds.

N
the aver

OTE Time is measured in elapsed time, not CPU time.

Returns
Returns the elapsed time of a PSL command.

Example
Displays the average elapsed time of "run test.psl" command:
message [time "run test.ppl" 100]

toggle-auto-print
Description
Prints simultaneously what is displayed on the screen.

Syntax
toggle-auto-print

Notes
Only for VT emulations.

Returns
N/A

147

trace
Description
Monitors variable accesses.

Syntax
trace option [arg arg ...]

option Specifies which method will be employed during the trace.
arg Specifies the parameters to be used during the trace.

Note
This command causes commands to be executed whenever certain operations are invoked. At
present, only variable tracing is implemented. The legal option's, which may be abbreviated, are:

trace variable name ops
command

Arranges for command to be executed whenever variable name
is accessed in one of the ways given by ops.

name may refer to a normal variable, an element of an array, or
to an array as a whole, i.e. name may be just the name of an
array, with no parenthesized index.
•

•

•
•
•

•

If name refers to a whole array, then command is invoked
whenever any element of the array is manipulated.
If the variable does not exist, it will be created but will not
be given a value, so it will be visible to namespace which
queries, but not to info exists queries.

ops indicates which operations are of interest, and consists of
one or more of the following letters:

r Invokes command whenever the variable is read.
w Invokes command whenever the variable is written.
u Invokes command whenever the variable is unset.

Variables can be unset explicitly with the unset command, or
implicitly when procedures return. (All of their local variables
are unset.) Variables are also unset when interpreters are
deleted, but traces will not be invoked because there is no
interpreter in which to execute them.

When the trace triggers, three arguments are appended to
command so that the actual command is command name1
name2 op:

name1 and name2 give the name(s) for the variable being
accessed. If the variable is a scalar then name1 gives the
variable's name and name2 is an empty string. If the
variable is an array element then name1 gives the name of
the array and name2 gives the index into the array. If an

148

entire array is being deleted and the trace was registered on
the overall array, rather than a single element, then name1
gives the array name and name2 is an empty string.
name1 and name2 are not necessarily the same as the name
used in the trace variable command. The upvar command
allows a procedure to reference a variable under a different
name.

•

•

op indicates what operation is being performed on the
variable, and is one of r, w, or u as defined above.
command executes in the same context as the code that
invoked the traced operation. If the variable was accessed
as part of a Tcl procedure, then command will have access
to the same local variables as code in the procedure. This
context may be different than the context in which the trace
was created. If command invokes a procedure, which it
normally does, then the procedure will have to use upvar
or uplevel if it wishes to access the traced variable. Note
also that name1 may not necessarily be the same as the
name used to set the trace on the variable. Differences can
occur if the access is made through a variable defined with
the upvar command.

For read and write traces, command can modify the variable to
affect the result of the traced operation. If command modifies
the value of a variable during a read or write trace, then the new
value will be returned as the result of the traced operation. The
return value from command is ignored except that if it returns
an error of any sort then the traced operation also returns an
error with the same error message returned by the trace
command. This mechanism can be used to implement read-only
variables, for example.

For write traces, command is invoked after the variable's value
has been changed. It can write a new value into the variable to
override the original value specified in the write operation. To
implement read-only variables, command will have to restore
the old value of the variable.

While command is executing during a read or write trace, traces
on the variable are temporarily disabled. This means that reads
and writes invoked by command will occur directly, without
invoking command, or any other traces, again. However, if
command unsets the variable then unset traces will be invoked.
When an unset trace is invoked, the variable has already been
deleted. It will appear to be undefined with no traces. If an
unset occurs because of a procedure return, then the trace will
be invoked in the variable context of the procedure being
returned to. The stack frame of the returning procedure will no
longer exist. Traces are not disabled during unset traces, so if an
unset trace command creates a new trace and accesses the
variable, the trace will be invoked. Any errors in unset traces

149

are ignored.

If there are multiple traces on a variable they are invoked in
order of creation, most-recent first. If one trace returns an error,
then no further traces are invoked for the variable. If an array
element has a trace set, and there is also a trace set on the array
as a whole, the trace on the overall array is invoked before the
one on the element.

Once created, the trace remains in effect either until the trace is
removed with the trace vdelete command described below,
until the variable is unset, or until the interpreter is deleted.
Unsetting an element of array will remove any traces on that
element, but will not remove traces on the overall array.
•

•

•

This command returns an empty string.

trace vdelete name ops
command

If there is a trace set on variable name with the operations and
command given by ops and command, then the trace is
removed, so that command will never again be invoked.

Returns an empty string.

trace vinfo name Returns a list containing one element for each trace currently
set on variable name. Each element of the list is itself a list
containing two elements, which are the ops and command
associated with the trace.

If name does not exist or does not have any traces set, then
the result of the command will be an empty string.

Returns
Returns a string.

150

U

unlock columns
Description
Ignores any host command that attempts to modify the number of columns in the display area
window.
Syntax
unlock-columns

Returns
N/A

unprotected-field
Description
Returns the first unprotected field in a block mode application screen.

Syntax
unprotected-field

Notes
The unprotected field must be followed by another string.

Returns
N/A
Example
yd = [unprotected-field 20]

message $yd

151

unset
Description
Deletes variables.

Syntax
unset name [name ...]

Name Specifies the name of the variable to be deleted.

Notes
This command removes one or more variables.
Each name is a variable name, specified in any of the ways acceptable to variable assignment.
If a name refers to an element of an array, then that element is removed without affecting the rest
of the array.
If a name consists of an array name with no parenthesized index, then the entire array is deleted.
An error occurs if any of the variables does not exist, and any variables after the nonexistent one
are not deleted.

Returns
Returns an empty string.

Example
Sets and then deletes variable a:
a = abc

unset a

uplevel
Description
Executes a script in a different stack frame.

Syntax
uplevel [level] arg [arg ...]

level Sets the stack at this specific value.
arg Specifies the parameters to be used by this command.

Notes
All of the arg arguments are concatenated as if they had been passed to concat. The result is then
evaluated in the variable context indicated by level. If level is an integer, then it gives a distance
to move (up the procedure calling stack) before executing the command. If level consists of "#"
followed by a number, then the number gives an absolute level number. If level is omitted, then it
defaults to 1. level cannot be defaulted if the first command argument starts with a digit or "#".
uplevel makes it possible to implement new control constructs as PSL procedures. For example,
uplevel could be used to implement the while construct as a PSL procedure.

152

Returns
Returns the result of the evaluation.

Example
Procedure a was invoked from top-level, and it called b, and b called c. c invokes the uplevel
command:

•

•
•

If level is 1 or #2 or omitted, then the command will be executed in the variable context of
b.
If level is 2 or #1 then the command will be executed in the variable context of a.
If level is 3 or #0, then the command will be executed at top-level. (Only global variables
will be visible.)

The uplevel command causes the invoking procedure to disappear from the procedure-calling
stack while the command is being executed. In the above example, suppose c invokes the
command
uplevel 1 {x = 43; d}

where d is another PSL procedure. The "x = 43" command will modify the variable x in b's
context, and d will execute at level 3, as if called from b. If it in turn executes the command
uplevel {x = 42}

then the "x = 42" command will modify the same variable x in b's context. The procedure c does
not appear to be on the call stack when d is executing. The command info level may be used to
obtain the level of the current procedure.

upvar
Description
Creates links to variables in a different stack frame.

Syntax
upvar [level] otherVar myVar [otherVar myVar ...]

level Sets the level of the stack at a specific value.
otherVar Specifies the variable in the stack frame.
myVar Specifies the variable to be linked to the OtherVar in the stack.

Notes
This command arranges for one or more local variables in the current procedure to refer to
variables in an enclosing procedure call or to global variables.
level may have any of the forms permitted for the uplevel command, and may be omitted if the
first letter of the first otherVar is not "#" or a digit (it defaults to 1).
For each otherVar argument, upvar makes the variable by that name in the procedure frame
given by level (or at global level, if level is #0 accessible in the current procedure) by the name
given in the corresponding myVar argument.

153

The variable named by otherVar need not exist at the time of the call. It will be created the first
time myVar is referenced, just like an ordinary variable.
upvar may only be invoked from within procedures.
myVar may not refer to an element of an array, but otherVar may refer to an array element.
The upvar command simplifies the implementation of call-by-name procedure calling and also
makes it easier to build new control constructs as PSL procedures.

Returns
Returns an empty string.

Example
Consider the following procedure:
proc add2 name {

 upvar $name x

 x = [expr $x+2]

}

add2 is invoked with an argument giving the name of a variable, and it adds two to the value of
that variable.
Although add2 could have been implemented using uplevel instead of upvar, upvar makes it
simpler for add2 to access the variable in the caller's procedure frame.
If an upvar variable is unset (e.g. x in add2 above), the unset operation affects the variable it is
linked to, not the upvar variable. There is no way to unset an upvar variable except by exiting
the procedure in which it is defined. However, it is possible to retarget an upvar variable by
executing another upvar command.

use default printer
Description
Sets the Windows default printer in the Printer Name field.

Syntax
use–default-printer

Returns
N/A

154

W

wait
Description
Waits for specific strings

Syntax
wait number for text [at r
wait number seconds

number Specifies
text Specifies
row column Specifies

Notes
This command instructs P
from the host application
application within the spe

wait system

wait record

 received from the host.

ow column]

the number of seconds required to wait.
the text that is expected.
where to expect text to appear.

owerTerm to wait a specified period of time for a certain string to arrive
. This text is case sensitive. If the string does not arrive from the host
cified time, PowerTerm returns the appropriate value.

Only for 5250 emulations.
It instructs PowerTerm to wait for the AS/400 to notify it when
it is finished processing a screen. At the time of processing the
screen data the emulator displays X SYSTEM in the status bar
and the user cannot enter any commands. When the AS/400
finishes processing, the X SYSTEM disappears and the script
continues with the next command.
If the wait system script command is executed when the X
SYSTEM is not displayed, it will immediately continue with
the next script command.

Only for 3270 emulations.
It instructs PowerTerm to wait for the next screen record from
the mainframe. When the mainframe finishes processing the
screen record, the script continues with the next command.
If the wait record script command is executed when the
mainframe is not processing a screen record, it will
immediately continue with the next script command.
The following note relates to wait system and wait record.

155

Between different screens in the AS/400 environment, there will only be one X SYSTEM.
However, in the mainframe environment, there may be several records per screen. For examples
on the use of wait system and wait record commands, select the Script | Start Script
Recording menu command. Enter several screens into the application and select the Script | Stop
Script Recording menu command. You can then save the script and view it.
Examples
The following script commands instruct PowerTerm to wait for two strings, "username" and
"password", during the login process. If the string is not received within 10 seconds, the message
“username not found” or “password not found”, displays and the script terminates.
Found = [wait 10 for username]

if {$found == 0} {message “Username not found”;return}

send “john^M”

Found = [wait 10 for password]

if {$found == 0} {message “Password not found”;return}

send “john pass^M”

wait 10 seconds

wait string
Description
Waits for multiple strings.

Syntax
wait string stringtosearchfor

stringtosearchfor Specifies the string to search for.

Notes
Every time you enter a wait string command, the string is inserted into a list of strings. The limit
of the total number of wait string commands is 8, and the length of each string cannot exceed 50
characters.
In order for the search to begin, the command wait start must be executed. When you execute the
command, PowerTerm starts to wait for one of these designated strings, via the wait string
command.
When the wait start command finds one of the listed strings, it returns an integer value and
releases the script to continue running. The return value represents the number of the string
according to its initial order. Every time that a wait start command has successfully located a
string, the strings’ list is emptied and has to be reentered.

You cannot run an additional wait start while one is already running and is waiting for strings.

Returns
N/A

156

Example
This script enters into the string list the strings David, wants, to, and sleep:
wait string David

wait string wants

wait string to

wait string sleep

The wait start command will cause PowerTerm script to wait:
x = [wait start]

message x

If the string David is received then the message displaying the content of the variable x will show
“1”. However if the string sleep is received then a message saying “4” will be displayed.

while
Description
Executes script repeatedly as long as a condition is met.

Syntax
while test body

test Specifies the condition, which must be evaluated.
body Specifies what will be executed if test is True.

Notes
The while command evaluates test as an expression, in the same way that the expr command
evaluates its argument.
The value of the expression must be a proper boolean value. If it is True, then body is executed
by passing it to the PSL.
After body is executed, test is evaluated again, and the process repeats until eventually test
evaluates to False. continue commands may be executed inside body to terminate the current
iteration of the loop, and break commands may be executed inside body to cause immediate
termination of the while command.

Returns
Returns an empty string.

Example
Displays “yes” while variable host is equal to “vax”:
while {$host == vax} {

 message yes

 commands...

157

}

window
Description
Changes the emulation window status.

Syntax
window option [args...]

option Specifies the condition to be evaluated.
args Specifies what is executed if test is True.

Notes
Performs one of several window operations, depending on option. The legal options are:

window [maximize | minimize |
restore | hide | show]

Changes the emulation window accordingly.

window size height width

Changes the height and width (in pixels) of the window.

window position y x Changes the x- and y-coordinates (in pixels) of the window.

Returns
Returns an empty string.

Example
Restores the window and sets its position and size:
window restore

window position 50 50

window size 400 600

	Important Notice
	Table of Contents
	Introduction to PSL
	PSL Overview
	
	PSL Types
	PSL Syntax
	Braces
	Brackets
	Dollar Sign
	Backslash

	PSL Data Types
	Lists
	Expressions
	Commands

	Variable Assignment
	Syntax
	Variables

	Using PowerTerm ScriptsPowerTerm provides you with the following script options:Create a Script creates a script to run upon startup or at any time during a PowerTerm session.Edit a Script edits an existing script file.Record a Script creates a script by
	
	Running Scripts
	Programming Soft Buttons
	Programming the Power Pad

	PSL Reference
	
	PowerTerm Sample Scripts
	Activating Script Files from the Host
	Escape Sequences for VT
	Escape Sequences for DG

	DDE Commands (Windows edition)
	A
	activate-menu-item
	append
	array
	ascii-code

	B
	break

	C
	case
	catch
	cd
	clear screen
	close
	color
	concat
	continue
	copy file
	copy from clipboard
	copy to clipboard
	cursor

	D
	date
	dde execute
	dde initiate
	dde poke
	dde server topic
	display

	E
	eof
	error
	eval
	exec
	exit emulator
	exit script
	expr

	F
	file
	flush
	for
	foreach
	format
	func

	G
	get
	getenv
	get printer name
	gets
	glob
	global

	H
	history

	I
	if
	incr
	indfile
	info
	input line
	input password
	iscommand

	J
	join

	K
	key

	L
	lappend
	lindex
	linsert
	list
	llength
	lock columns
	lrange
	lreplace
	lsearch
	lsort

	M
	md
	menu
	message
	move file

	O
	open
	open keyboard file
	open power pad file
	open setup file

	P
	pad
	paste
	paste from clipboard
	print file
	print screen
	proc
	puts
	pwd

	R
	read
	recv ascii file
	recv binary file
	recv binary stop
	recv file
	recv indfile
	regexp
	regsub
	remove menu item
	rename
	rename-file
	return
	ring bell
	run

	S
	save keyboard file
	save power pad file
	save setup file
	scan
	screen
	screen-rect
	seek
	send
	send abort output
	send ascii file
	send binary file
	send break
	send file
	send indfile
	send raw data
	session
	set
	set auto signon
	set baud rate
	set comm-type
	set device-name
	set disable-exit-active-session
	set end of medium
	set func cols
	set func rows
	set keyboard
	set lu category
	set lu name
	set max sessions
	set menu hotspot rows
	set message library
	set message queue
	set mouse control
	set mouse report
	set node name
	set pad cols
	set pad pos
	set pad rows
	set pad size
	set parity
	set print directions
	set print file name
	set print prefix
	set print screen convert
	set print suffix
	set printer header lines
	set printer transparent header
	set printer transparent trailer
	set protocol type
	set repeat right alt key
	set repeat left alt key
	set repeat left ctrl key
	set repeat right ctrl key
	set security type
	set slave printer convert
	set ssh allow agent
	set ssh attempt tis
	set ssh cipher
	set ssh enable compression
	set ssh enable x11
	set ssh type
	set ssh username
	set ssl type
	set system name
	set telnet port
	set terminal id
	set use alt key up
	set use available ssh show info
	set use tn3270e protocol
	split
	start auto print
	status message
	stop auto print
	string
	switch
	system request

	T
	tell
	terminal id
	time
	toggle-auto-print
	trace

	U
	unlock columns
	unprotected-field
	unset
	uplevel
	upvar
	use default printer

	W
	wait
	wait string
	while
	window

