
WAI and
the OWASP
Top 10

Contents

Introduction

Web Application Isolation

The OWASP Top 10: The Most
Critical Security Risks to Web
Applications

Conclusion

3
3
4

12

Introduction

Security is a key strategic requirement for any modern business. With
business activities increasingly shifting to web apps, securing their operations
is essential. Web Application Firewalls (WAFs), which were originally designed
and architected in the early 90s to solve for a different set of application access
scenarios than we have today, fail to address the issues as needed to secure
application operations in the wilds of the internet.

Web Application Isolation
Web application isolation (WAI) takes a fundamentally different approach to protecting applications and
the data within them than traditional WAF solutions.

WAI inverts remote browser isolation to airgap networks and apps from malware on user devices, and
applies granular user-level policies to control which applications each user can access, how, and which
actions are permitted for each user, in each app. SaaS and web application access may be restricted to
specific IP addresses.

 Other cloud security solutions require dedicated software or agents to be installed on every device.
 Cloud-based solutions that require no endpoint agents are ideal, not only because they are more
 convenient but also because web app security is most essential for workers whose devices are
.unmanaged, like 3rd party contractors

03

The OWASP Top 10: The Most Critical Security
Risks to Web Applications

The OWASP Top 10

To help security leaders and operators understand the role that WAI can play in securing their
environments, this paper maps WAI controls against the OWASP Top 10 Web Application Security Risks,
the globally recognized framework for web application security.

As demonstrated below, WAI’s isolation-based approach of air-gapping applications from the risks
of unmanaged devices (e.g. devices used by 3rd parties and contractors) and the broader internet is
indisputably superior to the traditional “hopefully detect then try to defend” WAF approach.

Broken Access Control Vulnerable and Outdated
Components

Identification and
Authentication Failures

Software and Data
Integrity Failures

Security Logging and
Monitoring Failures

Server-Side Request
Forgery

Injection

Cryptographic Failures

 Insecure Design

Security Misconfiguration

1 6

3 8

2 7

4 9

5 10

04

The best defense against this vulnerability is
to deny access by default -- a non-starter for
modern enterprises. Users need access and
blocking everything by default is not a feasible
approach. Instead, access controls must be
implemented and used across the application.

Domain models need to enforce business limit
requirements, and web server directory listings
must be disabled. This prevents file metadata
and backup files from being present inside of
web roots and helps limit reconnaissance of
critical information.

Logging issues such as access control failures
and detection of repeated failures is important,
as they can lead to proactive controls being
implemented before a warning becomes a
security event. Automated attack tools are
limited by instituting rate limits against APIs and
controller access. Finally, JWT tokens need to be
invalidated on the server when a logout occurs.

An enforcement mechanism can deny access
to web application objects and pages based on
crafted back-end policy configuration from the
WAI controller.

Upon successful authentication, the WAI
controller policy enforces explicit rights based on
users’ associated roles/groups.

WAI obfuscates the web application URL and
page source so attackers cannot access local
files.

Unauthenticated users cannot access the web
application anonymously.

Broken Access Control

Best Practice WAI Approach

1

Without proper access control, a directory
traversal attack can be used to steal data, modify
app behavior, or take control of a server. Click
here to see how WAI can protect apps from
these attacks.

WAI in Action

ZTEdge WAI OWASP Demo -
Broken Access Control

Directory Traversal Issue

05

https://youtu.be/SDOUlYrjqzY

Strong cryptographic controls and protocols
should always be used by applications.
Encryption must be employed both in transit
and at rest and data that is stored or accessed
should have applied cryptographic controls.

Only valid requests or posts should be allowed,
and controls should be applied to manage only
valid requests. Applications should limit inputs
to defend against injection commands and
filters should be in place to validate a connection
or application query.

WAI’s TLS 1.3 overlays any unsecured data
transmission.

All application data is obfuscated using pixel-
based rendering.

Sensitive data stored and processed by the web
application is air-gapped from the internet and
is not cached on the user’s endpoint.

Blocking file download is an additional control
that can be applied.

Injection attacks can occur in normal user input
forms as well as in hidden web fields. When
using pixel modes there are no FORM and
fields at the client, so it is impossible to inject
to fields. URL injection is also impossible due to
obfuscation of the app URLs. It is also advisable
to monitor outbound responses returned to the
user to detect information leakage resulting
from a successful injection attack.

Cryptographic Failures

Best Practice

Best Practice

WAI Approach

WAI Approach

2

Injection 3

In this demo, we show how WAI can prevent SQL
injection in login fields. Click to watch how!

WAI in Action

ZTEdge WAI OWASP Demo -
Injection

SQL Injection

https://youtu.be/65kEWIhvHRA

Creating a repeatable hardening process that
is fast and easy to deploy is essential when
deploying a new environment but is also hard
to do, thanks to the speed of development and
sprawl of application infrastructure.

The development deployment process
needs to be automated to allow for effortless
deployments. The platforms that are used must
be equipped with only the features that are
necessary, as this minimizes the attack surface
that can be leveraged by an attacker.

Administrators need to stay up to date with all patch
releases and security notes, as well as updates.

Segmented application architecture is one
of the strongest defenses against security
misconfiguration.

Finally, automated processes should be
implemented that verify how effectively the
configurations of each environment have been
implemented.

WAI adds secure access without the friction
of additional software development and
infrastructure redesign.

WAI does this by:

Isolating the web code, making it ‘invisible’
to the internet and eliminating the attack
surface

Adding multi-factor authentication to
minimize unauthorized access

Using an isolation layer that provides an
airgap to segment web servers from brute
force attacks originating from the internet

Best Practice WAI Approach

Insecure Design4

WAI secures apps that lack proper controls by
isolating web code and airgapping web server
content from user visibility and access.

WAI in Action

ZTEdge WAI OWASP Demo -
Insecure Design

Session Storage

07

https://youtu.be/pjp2BAAURUs

Infrastructure components must be configured
correctly for operations and should be regularly
checked and updated for weaknesses and
vulnerabilities.

To properly secure a web application, not only
the software must be properly locked down, but
all other integral infrastructure components
must be locked down as well. It is also important
to conduct regular and thorough audits to
ensure that controls have been implemented
properly and remain firmly in place.

Continuous vulnerability scanning is the key
to ensuring nothing is missed. However, if a
vulnerability is discovered, WAI can provide
immediate protection rather than waiting
on a time-intensive fix. Also, because any
modification to code—whether to resolve a
vulnerability or fix a defect—can introduce
additional vulnerabilities, WAI becomes a critical
component for ensuring uptime with minimal
risk, so developers have the necessary time to
produce a stable and secure solution.

Best Practice WAI Approach

Security Misconfiguration5

Regular upgrade cycles and patch management
must be in place and should be automated to
work at scale across hybrid infrastructure.

The key to a secure environment is to keep
components updated wherever you can. Where
you can’t, compensating controls such as strong
WAI can be used to block exploitation of known
vulnerabilities, while keeping software intact and
operational.

WAI can buy time while patches are developed
and rolled out—and it also protects against any
subsequent attack variants that are common
when exploit code hits the web.

Best Practice WAI Approach

Vulnerable and Outdated Components 6

08

9

Multi-factor authentication is one of the most
effective methods of preventing unauthorized
access via broken authentication exploits.
Product owners can also minimize their
exposure by ensuring that their applications
don’t ship with default credentials and
passwords.

It’s also important to protect user choices for
passwords by enforcing minimum password
requirements such as length, complexity and
password reuse restrictions and rotation.

Other steps include username and password
recovery, as well as the use of the same message
for all outcomes by hardening the API pathways
against account enumeration attacks. All login
failure events need to be logged, and if credential
stuffing or brute-force attempts are detected,
then system administrators need to be alerted.
Server-side authentication is important because it
prevents attackers from breaking authentication
on a local system. Session IDs must not be
displayed in the browser, as this allows attackers
to use session keys as an attack vector.

WAI secures user identification and
authentication by:

Including a built-in identity provider with
multi-factor auth support

Mandating the use of strong (complex)
passwords to meet compliance with best
practices.

Brute-force detection by permanently or
temporarily disabling a user account if the
number of login failures exceeds a specified
threshold.

The WAI authentication layer secures
authentication-related vulnerabilities where:

Default passwords are being used

Users are sharing accounts and passwords

The application cannot support multi-factor
authentication by itself.

WAI also supports external SAML 2.0, Open
ID Connect, and social identity providers such
as Azure Active Directory, Okta, Ping Identity,
Google login, etc.

Best Practice WAI Approach

Identification and Authentication Failures7

Invalid SSL certificates endanger app security
and expose apps to regulatory risk. WAI policy
engine ensures that essential SSL security
controls are applied.

WAI in Action

Data must be classified to be best protected.
This approach helps the team know what data
has been processed, stored, or transmitted by
the application or systems that are running,
and to understand the value of that data for the
business.

Another potential solution to this problem is to
not store any sensitive data in the first place.
Data can be tokenized and truncated. All data
that is at rest must be encrypted.

All data in transit must be encrypted with
security protocols such as TLS along with Perfect
Forward Secrecy ciphers (PFS). Disabling the
caching of sensitive data and only using salted
hashes is also advisable.

WAI’s authentication layer can help by making
sure that usernames cannot be validated from
server response codes: an incorrect username
error and incorrect password should generate
the same (or generic) error message.

WAI policy can force the browser to employ
security controls related to access to and
transactions with sensitive data; for example:
disabling clipboard copy / paste.

WAI uses TLS 1.3 to secure data in transit.

All application data is obfuscated using pixel-
based rendering.

Sensitive data is never stored on the user’s endpoint.

Blocking file downloads can also be applied to
prevent leakage of sensitive data.

Best Practice WAI Approach

Software and Data Integrity Failures8

Everything should be logged and leveraged for
additional insight and understanding of what is
taking place for applications that are in use.

WAI allows standardization of access logging for
web applications based on policy controls—and
logging of that information off-box (SIEM) for
further analysis and reporting.

Best Practice WAI Approach

Security Logging and Monitoring Failures 9

ZTEdge WAI OWASP Demo -
Software and Data Integrity Failures

SSL Certifications

https://youtu.be/jSjhigX28-s

11

Whitelist Domains in DNS is a best practice to
stop SSRF. This happens by whitelisting any
domain or address that the application accesses.

By also not allowing the server to send raw
responses this threat can be managed as well.
An application should never send a raw response
body from the server to the client. Responses
that the client receives need to be expected.

Lastly, by enforcing correct URL schemas SSRF
can be stopped. Examples include:

Allow only URL schemas that an application
must use to access backend and front-end
resources. There is no need to have ftp://, file:/// or
even http:// enabled if you only use https://.

Applied isolation and segmentation and ZTNA-
focused access can also be tied into this fix for
SSRF.

Authentication of all services should be enabled
on any service that is running inside a network
even if the application doesn’t require that
service to operate. Services such as memcached,
redis, mongo, and others don’t require
authentication for normal operations, but this
means they can be exploited and should be
made to enable authentication.

Sanitizing and validating inputs is necessary as
well. By enforcing only parsed and sanitized user
input sent to an application SSRF is managed.
After sanitization validation should be employed
to ensure that nothing malicious was allowed to
pass through the application via that user input.

WAI hides internal servers from the internet so
they cannot be port scanned.

WAI obfuscates the web application URL so
attackers cannot access local files and internal
services by manipulating the application’s URL.

WAI acts as an airgap to the internal application
and its dependent services - defending it against
denial of service attacks.

Best Practice WAI Approach

Server-Side Request Forgery10

WAI prevents port scans from providing
valuable information to threat actors. It's a
smart way to foil potential attacks before
they even begin.

WAI in Action

ZTEdge WAI OWASP Demo -
Server Side Request Forgery

Port Scan

https://youtu.be/Wjr99kAtvVI

ZTEdge Web Application Isolation airgaps your applications from
web-based threats and the risks of unmanaged devices, providing an
application security solution that is designed for the modern age: An
age in which the productivity of employees, contractors, and partners
depends on having simple, secure access to applications in the cloud
(private apps or SaaS) and on-premises, using a wide array of devices.

www.zerotrustedge.com

info@zerotrustedge.com

US: (201) 767-2210

Europe: +44 (0) 1905 777970

ROW: +972-2-591-1700

Please contact Ericom Software
to learn more about WAI.

Contact us now

Conclusion

mailto:info%40zerotrustedge.com?subject=
https://www.ericom.com/solutions/browser-isolation/

